Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field
In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractiv...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-06, Vol.18 (24), p.16281-16292 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16292 |
---|---|
container_issue | 24 |
container_start_page | 16281 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Wexler, Adam D Drusová, Sandra Woisetschläger, Jakob Fuchs, Elmar C |
description | In this experiment liquid water is subject to an inhomogeneous electric field (∇
2
E
a
10
10
V m
2
) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm
−1
) as well as an increase in the local mode (3490 cm
−1
) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes.
Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems. |
doi_str_mv | 10.1039/c5cp07218b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825517895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1797542829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</originalsourceid><addsrcrecordid>eNqFkTtPxTAMhSME4r2wgzIipEIeTdOMcMVLQsAAc9UkLgSlzSVpQfx7AhcuI4ttyd-xbB-E9ig5poSrEyPMnEhGa72CNmlZ8UKRulxd1rLaQFspvRBCqKB8HW0wyQSnSm6ieBuGAl4n552Oburx-AyxD_ZjaHtnEm4Hi03wHszo3gC_ZaodXRhajzMFCYcOe5f1Fr-3I0TshqzJ8Tn04QkGCFPC8CWPzuDOgbc7aK1rfYLdn7yNHi_OH2ZXxc3d5fXs9KYwvOZjYWxlqo4oRSx0lFRWUZPP0poTQWtCOqIFBW1LYKU0gllbllQZpnXFuKwt30aHi7nzGF4nSGPTu2TA-_Z7q4bWTAgqayX-R6WSomQ1Uxk9WqAmhpQidM08ur6NHw0lzZcdzUzM7r_tOMvwwc_cSfdgl-jv_zOwvwBiMsvun5_8E0ynkMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797542829</pqid></control><display><type>article</type><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</creator><creatorcontrib>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</creatorcontrib><description>In this experiment liquid water is subject to an inhomogeneous electric field (∇
2
E
a
10
10
V m
2
) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm
−1
) as well as an increase in the local mode (3490 cm
−1
) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes.
Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp07218b</identifier><identifier>PMID: 27253197</identifier><language>eng</language><publisher>England</publisher><subject>Electric fields ; Electrodes ; Inhomogeneous electric fields ; Liquids ; Refractive index ; Refractivity ; Thermodynamics ; Water</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-06, Vol.18 (24), p.16281-16292</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</citedby><cites>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</cites><orcidid>0000-0002-4086-1329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27253197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wexler, Adam D</creatorcontrib><creatorcontrib>Drusová, Sandra</creatorcontrib><creatorcontrib>Woisetschläger, Jakob</creatorcontrib><creatorcontrib>Fuchs, Elmar C</creatorcontrib><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this experiment liquid water is subject to an inhomogeneous electric field (∇
2
E
a
10
10
V m
2
) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm
−1
) as well as an increase in the local mode (3490 cm
−1
) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes.
Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</description><subject>Electric fields</subject><subject>Electrodes</subject><subject>Inhomogeneous electric fields</subject><subject>Liquids</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Thermodynamics</subject><subject>Water</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPxTAMhSME4r2wgzIipEIeTdOMcMVLQsAAc9UkLgSlzSVpQfx7AhcuI4ttyd-xbB-E9ig5poSrEyPMnEhGa72CNmlZ8UKRulxd1rLaQFspvRBCqKB8HW0wyQSnSm6ieBuGAl4n552Oburx-AyxD_ZjaHtnEm4Hi03wHszo3gC_ZaodXRhajzMFCYcOe5f1Fr-3I0TshqzJ8Tn04QkGCFPC8CWPzuDOgbc7aK1rfYLdn7yNHi_OH2ZXxc3d5fXs9KYwvOZjYWxlqo4oRSx0lFRWUZPP0poTQWtCOqIFBW1LYKU0gllbllQZpnXFuKwt30aHi7nzGF4nSGPTu2TA-_Z7q4bWTAgqayX-R6WSomQ1Uxk9WqAmhpQidM08ur6NHw0lzZcdzUzM7r_tOMvwwc_cSfdgl-jv_zOwvwBiMsvun5_8E0ynkMo</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Wexler, Adam D</creator><creator>Drusová, Sandra</creator><creator>Woisetschläger, Jakob</creator><creator>Fuchs, Elmar C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4086-1329</orcidid></search><sort><creationdate>20160628</creationdate><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><author>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electric fields</topic><topic>Electrodes</topic><topic>Inhomogeneous electric fields</topic><topic>Liquids</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Thermodynamics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wexler, Adam D</creatorcontrib><creatorcontrib>Drusová, Sandra</creatorcontrib><creatorcontrib>Woisetschläger, Jakob</creatorcontrib><creatorcontrib>Fuchs, Elmar C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wexler, Adam D</au><au>Drusová, Sandra</au><au>Woisetschläger, Jakob</au><au>Fuchs, Elmar C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-06-28</date><risdate>2016</risdate><volume>18</volume><issue>24</issue><spage>16281</spage><epage>16292</epage><pages>16281-16292</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this experiment liquid water is subject to an inhomogeneous electric field (∇
2
E
a
10
10
V m
2
) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm
−1
) as well as an increase in the local mode (3490 cm
−1
) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes.
Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</abstract><cop>England</cop><pmid>27253197</pmid><doi>10.1039/c5cp07218b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4086-1329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-06, Vol.18 (24), p.16281-16292 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825517895 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Electric fields Electrodes Inhomogeneous electric fields Liquids Refractive index Refractivity Thermodynamics Water |
title | Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equilibrium%20thermodynamics%20and%20collective%20vibrational%20modes%20of%20liquid%20water%20in%20an%20inhomogeneous%20electric%20field&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wexler,%20Adam%20D&rft.date=2016-06-28&rft.volume=18&rft.issue=24&rft.spage=16281&rft.epage=16292&rft.pages=16281-16292&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp07218b&rft_dat=%3Cproquest_cross%3E1797542829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797542829&rft_id=info:pmid/27253197&rfr_iscdi=true |