Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field

In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-06, Vol.18 (24), p.16281-16292
Hauptverfasser: Wexler, Adam D, Drusová, Sandra, Woisetschläger, Jakob, Fuchs, Elmar C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16292
container_issue 24
container_start_page 16281
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Wexler, Adam D
Drusová, Sandra
Woisetschläger, Jakob
Fuchs, Elmar C
description In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm −1 ) as well as an increase in the local mode (3490 cm −1 ) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes. Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.
doi_str_mv 10.1039/c5cp07218b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825517895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1797542829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</originalsourceid><addsrcrecordid>eNqFkTtPxTAMhSME4r2wgzIipEIeTdOMcMVLQsAAc9UkLgSlzSVpQfx7AhcuI4ttyd-xbB-E9ig5poSrEyPMnEhGa72CNmlZ8UKRulxd1rLaQFspvRBCqKB8HW0wyQSnSm6ieBuGAl4n552Oburx-AyxD_ZjaHtnEm4Hi03wHszo3gC_ZaodXRhajzMFCYcOe5f1Fr-3I0TshqzJ8Tn04QkGCFPC8CWPzuDOgbc7aK1rfYLdn7yNHi_OH2ZXxc3d5fXs9KYwvOZjYWxlqo4oRSx0lFRWUZPP0poTQWtCOqIFBW1LYKU0gllbllQZpnXFuKwt30aHi7nzGF4nSGPTu2TA-_Z7q4bWTAgqayX-R6WSomQ1Uxk9WqAmhpQidM08ur6NHw0lzZcdzUzM7r_tOMvwwc_cSfdgl-jv_zOwvwBiMsvun5_8E0ynkMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797542829</pqid></control><display><type>article</type><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</creator><creatorcontrib>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</creatorcontrib><description>In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm −1 ) as well as an increase in the local mode (3490 cm −1 ) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes. Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp07218b</identifier><identifier>PMID: 27253197</identifier><language>eng</language><publisher>England</publisher><subject>Electric fields ; Electrodes ; Inhomogeneous electric fields ; Liquids ; Refractive index ; Refractivity ; Thermodynamics ; Water</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-06, Vol.18 (24), p.16281-16292</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</citedby><cites>FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</cites><orcidid>0000-0002-4086-1329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27253197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wexler, Adam D</creatorcontrib><creatorcontrib>Drusová, Sandra</creatorcontrib><creatorcontrib>Woisetschläger, Jakob</creatorcontrib><creatorcontrib>Fuchs, Elmar C</creatorcontrib><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm −1 ) as well as an increase in the local mode (3490 cm −1 ) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes. Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</description><subject>Electric fields</subject><subject>Electrodes</subject><subject>Inhomogeneous electric fields</subject><subject>Liquids</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Thermodynamics</subject><subject>Water</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPxTAMhSME4r2wgzIipEIeTdOMcMVLQsAAc9UkLgSlzSVpQfx7AhcuI4ttyd-xbB-E9ig5poSrEyPMnEhGa72CNmlZ8UKRulxd1rLaQFspvRBCqKB8HW0wyQSnSm6ieBuGAl4n552Oburx-AyxD_ZjaHtnEm4Hi03wHszo3gC_ZaodXRhajzMFCYcOe5f1Fr-3I0TshqzJ8Tn04QkGCFPC8CWPzuDOgbc7aK1rfYLdn7yNHi_OH2ZXxc3d5fXs9KYwvOZjYWxlqo4oRSx0lFRWUZPP0poTQWtCOqIFBW1LYKU0gllbllQZpnXFuKwt30aHi7nzGF4nSGPTu2TA-_Z7q4bWTAgqayX-R6WSomQ1Uxk9WqAmhpQidM08ur6NHw0lzZcdzUzM7r_tOMvwwc_cSfdgl-jv_zOwvwBiMsvun5_8E0ynkMo</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Wexler, Adam D</creator><creator>Drusová, Sandra</creator><creator>Woisetschläger, Jakob</creator><creator>Fuchs, Elmar C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4086-1329</orcidid></search><sort><creationdate>20160628</creationdate><title>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</title><author>Wexler, Adam D ; Drusová, Sandra ; Woisetschläger, Jakob ; Fuchs, Elmar C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cd6c6f0990def106d91c084bb3051800f0b51ebd4e247c52dd4419c2bb62378d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electric fields</topic><topic>Electrodes</topic><topic>Inhomogeneous electric fields</topic><topic>Liquids</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Thermodynamics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wexler, Adam D</creatorcontrib><creatorcontrib>Drusová, Sandra</creatorcontrib><creatorcontrib>Woisetschläger, Jakob</creatorcontrib><creatorcontrib>Fuchs, Elmar C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wexler, Adam D</au><au>Drusová, Sandra</au><au>Woisetschläger, Jakob</au><au>Fuchs, Elmar C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-06-28</date><risdate>2016</risdate><volume>18</volume><issue>24</issue><spage>16281</spage><epage>16292</epage><pages>16281-16292</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this experiment liquid water is subject to an inhomogeneous electric field (∇ 2 E a 10 10 V m 2 ) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm −1 ) as well as an increase in the local mode (3490 cm −1 ) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes. Liquid water subject to a high intensity inhomogeneous electric field exhibits enhancement of collective vibrational modes as well as an increase in the local mode energy. The onset of these dynamics is fundamental to electrohydrodynamic processes and may play a critical role in biological systems.</abstract><cop>England</cop><pmid>27253197</pmid><doi>10.1039/c5cp07218b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4086-1329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-06, Vol.18 (24), p.16281-16292
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1825517895
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Electric fields
Electrodes
Inhomogeneous electric fields
Liquids
Refractive index
Refractivity
Thermodynamics
Water
title Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equilibrium%20thermodynamics%20and%20collective%20vibrational%20modes%20of%20liquid%20water%20in%20an%20inhomogeneous%20electric%20field&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wexler,%20Adam%20D&rft.date=2016-06-28&rft.volume=18&rft.issue=24&rft.spage=16281&rft.epage=16292&rft.pages=16281-16292&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp07218b&rft_dat=%3Cproquest_cross%3E1797542829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797542829&rft_id=info:pmid/27253197&rfr_iscdi=true