Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces

The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2016-05, Vol.89 (3), p.747-753
Hauptverfasser: Bakulin, V. N., Volkov, E. N., Nedbai, A. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 3
container_start_page 747
container_title Journal of engineering physics and thermophysics
container_volume 89
creator Bakulin, V. N.
Volkov, E. N.
Nedbai, A. Ya
description The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu–Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.
doi_str_mv 10.1007/s10891-016-1435-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825516273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495938375</galeid><sourcerecordid>A495938375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c390339851542e3678f24543f1c14989ce363b0700867eac644fec47c5ca180c3</originalsourceid><addsrcrecordid>eNp9kcFu3CAQhq2qkZqmfYDeOLYHJ2DA4ONq2zSRVqq0m0i9IRaPN0QspICV-NRXD45zySVCGkbD94-Y-avqG8HnBGNxkQiWHakxaWvCKK_ph-qUcEFrKcjfjyXHbVNeG_6p-pzSPca4k4yeVv9_Tl4frUG7rPfW2TyhMCCN1pOzvo_WaId2d-Ac2oL1Q4gGerSf0Cb4g81jb30BtnafkPZ90V0F58Ljqxwiun2J-Q7QymQb_Nx99WSL6HLulb5UJ4N2Cb6-3mfV7eWvm_VVvfnz-3q92tSGdizPEVPaSU44a4C2Qg4N44wOxBDWyc6UGt1jgbFsBWjTMjaAYcJwo4nEhp5V35e-DzH8GyFldbTJlLm0hzAmRWTDOWkbQQt6vqAH7UDNQ-eoTTk9lEUFD4Mt9RXreEclFbwIfrwRFCbDUz7oMSV1vdu-ZcnCmhhSijCoh2iPOk6KYDU7qRYnVXFSzU6q-UPNokmF9QeI6j6MsSw-vSN6BgqCnw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825516273</pqid></control><display><type>article</type><title>Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces</title><source>Springer Nature - Complete Springer Journals</source><creator>Bakulin, V. N. ; Volkov, E. N. ; Nedbai, A. Ya</creator><creatorcontrib>Bakulin, V. N. ; Volkov, E. N. ; Nedbai, A. Ya</creatorcontrib><description>The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu–Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-016-1435-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Classical Mechanics ; Complex Systems ; Cylinders ; Cylindrical shells ; Dynamic stability ; Engineering ; Engineering Thermodynamics ; Equations of motion ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Mathematical analysis ; Mathematical models ; Ribs ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2016-05, Vol.89 (3), p.747-753</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c390339851542e3678f24543f1c14989ce363b0700867eac644fec47c5ca180c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-016-1435-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-016-1435-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Volkov, E. N.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><title>Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu–Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.</description><subject>Approximation</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Dynamic stability</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Equations of motion</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Ribs</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu3CAQhq2qkZqmfYDeOLYHJ2DA4ONq2zSRVqq0m0i9IRaPN0QspICV-NRXD45zySVCGkbD94-Y-avqG8HnBGNxkQiWHakxaWvCKK_ph-qUcEFrKcjfjyXHbVNeG_6p-pzSPca4k4yeVv9_Tl4frUG7rPfW2TyhMCCN1pOzvo_WaId2d-Ac2oL1Q4gGerSf0Cb4g81jb30BtnafkPZ90V0F58Ljqxwiun2J-Q7QymQb_Nx99WSL6HLulb5UJ4N2Cb6-3mfV7eWvm_VVvfnz-3q92tSGdizPEVPaSU44a4C2Qg4N44wOxBDWyc6UGt1jgbFsBWjTMjaAYcJwo4nEhp5V35e-DzH8GyFldbTJlLm0hzAmRWTDOWkbQQt6vqAH7UDNQ-eoTTk9lEUFD4Mt9RXreEclFbwIfrwRFCbDUz7oMSV1vdu-ZcnCmhhSijCoh2iPOk6KYDU7qRYnVXFSzU6q-UPNokmF9QeI6j6MsSw-vSN6BgqCnw8</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Bakulin, V. N.</creator><creator>Volkov, E. N.</creator><creator>Nedbai, A. Ya</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces</title><author>Bakulin, V. N. ; Volkov, E. N. ; Nedbai, A. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c390339851542e3678f24543f1c14989ce363b0700867eac644fec47c5ca180c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Dynamic stability</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Equations of motion</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Ribs</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Volkov, E. N.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakulin, V. N.</au><au>Volkov, E. N.</au><au>Nedbai, A. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>89</volume><issue>3</issue><spage>747</spage><epage>753</epage><pages>747-753</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu–Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-016-1435-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2016-05, Vol.89 (3), p.747-753
issn 1062-0125
1573-871X
language eng
recordid cdi_proquest_miscellaneous_1825516273
source Springer Nature - Complete Springer Journals
subjects Approximation
Classical Mechanics
Complex Systems
Cylinders
Cylindrical shells
Dynamic stability
Engineering
Engineering Thermodynamics
Equations of motion
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Mathematical analysis
Mathematical models
Ribs
Thermodynamics
title Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Stability%20of%20a%20Cylindrical%20Shell%20Reinforced%20by%20Longitudinal%20Ribs%20and%20a%20Hollow%20Cylinder%20Under%20the%20Action%20of%20Axial%20Forces&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Bakulin,%20V.%20N.&rft.date=2016-05-01&rft.volume=89&rft.issue=3&rft.spage=747&rft.epage=753&rft.pages=747-753&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-016-1435-3&rft_dat=%3Cgale_proqu%3EA495938375%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825516273&rft_id=info:pmid/&rft_galeid=A495938375&rfr_iscdi=true