A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube
In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2016-07, Vol.63 (7), p.2912-2918 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2918 |
---|---|
container_issue | 7 |
container_start_page | 2912 |
container_title | IEEE transactions on electron devices |
container_volume | 63 |
creator | Tahanian, Esmaeel Dadashzadeh, Gholamreza |
description | In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively. |
doi_str_mv | 10.1109/TED.2016.2564740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825516179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7473920</ieee_id><sourcerecordid>1825516179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep88o8lrW2USi6aNTlME1uSkraqZOk4r93aooLV_dxvnO5HISuCR4RgvV9Nn0cUUzEiCaCS45P0IAkiYy14OIUDTAmKtZMsXN00TTrMArO6QC9j6MXt4c6Su0uTr0LfTRzdQFF_GH3sOqqAqJF7b5-x2jR-i5vOw9R6XyUxg92W0SZD1JdbVc9k3VLuERnpa0buDrWIXqbTbPJUzx_TZ8n43mcM8rbuOA4ASUo04RRga2gSlgpGF1yXZSyZCWFXDESlomS1mqwQEAym1srbE7ZEN31d3fefXbQtGZTNTnUtd2C6xpDFE0SIojUAb39h65d57fhOxNkpTSnigUK91TuXdN4KM3OVxvrvw3B5hC0CUGbQ9DmGHSw3PSWCgD-cMkl0xSzH-ufd1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894283</pqid></control><display><type>article</type><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><source>IEEE Electronic Library (IEL)</source><creator>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</creator><creatorcontrib>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</creatorcontrib><description>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2564740</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Devices ; Efficiency ; Electron beams ; Folded waveguide (FW) ; gap-groove waveguide (GGW) ; Impedance ; Mathematical analysis ; Nails ; Phase velocity ; Plasma ; Plates (structural members) ; Rectangular waveguides ; Sheet metal ; slow-wave structure (SWS) ; Traveling wave tubes ; traveling-wave tube (TWT) ; Vacuum electronics ; Waveguide discontinuities</subject><ispartof>IEEE transactions on electron devices, 2016-07, Vol.63 (7), p.2912-2918</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</citedby><cites>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</cites><orcidid>0000-0003-0302-1918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7473920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7473920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tahanian, Esmaeel</creatorcontrib><creatorcontrib>Dadashzadeh, Gholamreza</creatorcontrib><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</description><subject>Computer simulation</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Electron beams</subject><subject>Folded waveguide (FW)</subject><subject>gap-groove waveguide (GGW)</subject><subject>Impedance</subject><subject>Mathematical analysis</subject><subject>Nails</subject><subject>Phase velocity</subject><subject>Plasma</subject><subject>Plates (structural members)</subject><subject>Rectangular waveguides</subject><subject>Sheet metal</subject><subject>slow-wave structure (SWS)</subject><subject>Traveling wave tubes</subject><subject>traveling-wave tube (TWT)</subject><subject>Vacuum electronics</subject><subject>Waveguide discontinuities</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep88o8lrW2USi6aNTlME1uSkraqZOk4r93aooLV_dxvnO5HISuCR4RgvV9Nn0cUUzEiCaCS45P0IAkiYy14OIUDTAmKtZMsXN00TTrMArO6QC9j6MXt4c6Su0uTr0LfTRzdQFF_GH3sOqqAqJF7b5-x2jR-i5vOw9R6XyUxg92W0SZD1JdbVc9k3VLuERnpa0buDrWIXqbTbPJUzx_TZ8n43mcM8rbuOA4ASUo04RRga2gSlgpGF1yXZSyZCWFXDESlomS1mqwQEAym1srbE7ZEN31d3fefXbQtGZTNTnUtd2C6xpDFE0SIojUAb39h65d57fhOxNkpTSnigUK91TuXdN4KM3OVxvrvw3B5hC0CUGbQ9DmGHSw3PSWCgD-cMkl0xSzH-ufd1c</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Tahanian, Esmaeel</creator><creator>Dadashzadeh, Gholamreza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-0302-1918</orcidid></search><sort><creationdate>201607</creationdate><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><author>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Electron beams</topic><topic>Folded waveguide (FW)</topic><topic>gap-groove waveguide (GGW)</topic><topic>Impedance</topic><topic>Mathematical analysis</topic><topic>Nails</topic><topic>Phase velocity</topic><topic>Plasma</topic><topic>Plates (structural members)</topic><topic>Rectangular waveguides</topic><topic>Sheet metal</topic><topic>slow-wave structure (SWS)</topic><topic>Traveling wave tubes</topic><topic>traveling-wave tube (TWT)</topic><topic>Vacuum electronics</topic><topic>Waveguide discontinuities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahanian, Esmaeel</creatorcontrib><creatorcontrib>Dadashzadeh, Gholamreza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tahanian, Esmaeel</au><au>Dadashzadeh, Gholamreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-07</date><risdate>2016</risdate><volume>63</volume><issue>7</issue><spage>2912</spage><epage>2918</epage><pages>2912-2918</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2564740</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0302-1918</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2016-07, Vol.63 (7), p.2912-2918 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825516179 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Devices Efficiency Electron beams Folded waveguide (FW) gap-groove waveguide (GGW) Impedance Mathematical analysis Nails Phase velocity Plasma Plates (structural members) Rectangular waveguides Sheet metal slow-wave structure (SWS) Traveling wave tubes traveling-wave tube (TWT) Vacuum electronics Waveguide discontinuities |
title | A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Gap-Groove%20Folded-Waveguide%20Slow-Wave%20Structure%20for%20G-Band%20Traveling-Wave%20Tube&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Tahanian,%20Esmaeel&rft.date=2016-07&rft.volume=63&rft.issue=7&rft.spage=2912&rft.epage=2918&rft.pages=2912-2918&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2564740&rft_dat=%3Cproquest_RIE%3E1825516179%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798894283&rft_id=info:pmid/&rft_ieee_id=7473920&rfr_iscdi=true |