A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube

In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2016-07, Vol.63 (7), p.2912-2918
Hauptverfasser: Tahanian, Esmaeel, Dadashzadeh, Gholamreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2918
container_issue 7
container_start_page 2912
container_title IEEE transactions on electron devices
container_volume 63
creator Tahanian, Esmaeel
Dadashzadeh, Gholamreza
description In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.
doi_str_mv 10.1109/TED.2016.2564740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825516179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7473920</ieee_id><sourcerecordid>1825516179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep88o8lrW2USi6aNTlME1uSkraqZOk4r93aooLV_dxvnO5HISuCR4RgvV9Nn0cUUzEiCaCS45P0IAkiYy14OIUDTAmKtZMsXN00TTrMArO6QC9j6MXt4c6Su0uTr0LfTRzdQFF_GH3sOqqAqJF7b5-x2jR-i5vOw9R6XyUxg92W0SZD1JdbVc9k3VLuERnpa0buDrWIXqbTbPJUzx_TZ8n43mcM8rbuOA4ASUo04RRga2gSlgpGF1yXZSyZCWFXDESlomS1mqwQEAym1srbE7ZEN31d3fefXbQtGZTNTnUtd2C6xpDFE0SIojUAb39h65d57fhOxNkpTSnigUK91TuXdN4KM3OVxvrvw3B5hC0CUGbQ9DmGHSw3PSWCgD-cMkl0xSzH-ufd1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894283</pqid></control><display><type>article</type><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><source>IEEE Electronic Library (IEL)</source><creator>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</creator><creatorcontrib>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</creatorcontrib><description>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2564740</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Devices ; Efficiency ; Electron beams ; Folded waveguide (FW) ; gap-groove waveguide (GGW) ; Impedance ; Mathematical analysis ; Nails ; Phase velocity ; Plasma ; Plates (structural members) ; Rectangular waveguides ; Sheet metal ; slow-wave structure (SWS) ; Traveling wave tubes ; traveling-wave tube (TWT) ; Vacuum electronics ; Waveguide discontinuities</subject><ispartof>IEEE transactions on electron devices, 2016-07, Vol.63 (7), p.2912-2918</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</citedby><cites>FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</cites><orcidid>0000-0003-0302-1918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7473920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7473920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tahanian, Esmaeel</creatorcontrib><creatorcontrib>Dadashzadeh, Gholamreza</creatorcontrib><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</description><subject>Computer simulation</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Electron beams</subject><subject>Folded waveguide (FW)</subject><subject>gap-groove waveguide (GGW)</subject><subject>Impedance</subject><subject>Mathematical analysis</subject><subject>Nails</subject><subject>Phase velocity</subject><subject>Plasma</subject><subject>Plates (structural members)</subject><subject>Rectangular waveguides</subject><subject>Sheet metal</subject><subject>slow-wave structure (SWS)</subject><subject>Traveling wave tubes</subject><subject>traveling-wave tube (TWT)</subject><subject>Vacuum electronics</subject><subject>Waveguide discontinuities</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep88o8lrW2USi6aNTlME1uSkraqZOk4r93aooLV_dxvnO5HISuCR4RgvV9Nn0cUUzEiCaCS45P0IAkiYy14OIUDTAmKtZMsXN00TTrMArO6QC9j6MXt4c6Su0uTr0LfTRzdQFF_GH3sOqqAqJF7b5-x2jR-i5vOw9R6XyUxg92W0SZD1JdbVc9k3VLuERnpa0buDrWIXqbTbPJUzx_TZ8n43mcM8rbuOA4ASUo04RRga2gSlgpGF1yXZSyZCWFXDESlomS1mqwQEAym1srbE7ZEN31d3fefXbQtGZTNTnUtd2C6xpDFE0SIojUAb39h65d57fhOxNkpTSnigUK91TuXdN4KM3OVxvrvw3B5hC0CUGbQ9DmGHSw3PSWCgD-cMkl0xSzH-ufd1c</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Tahanian, Esmaeel</creator><creator>Dadashzadeh, Gholamreza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-0302-1918</orcidid></search><sort><creationdate>201607</creationdate><title>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</title><author>Tahanian, Esmaeel ; Dadashzadeh, Gholamreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d405e8623913260a6286a7632b49df7f3f2ec8316a7587aa9eae1e73acaa6ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Electron beams</topic><topic>Folded waveguide (FW)</topic><topic>gap-groove waveguide (GGW)</topic><topic>Impedance</topic><topic>Mathematical analysis</topic><topic>Nails</topic><topic>Phase velocity</topic><topic>Plasma</topic><topic>Plates (structural members)</topic><topic>Rectangular waveguides</topic><topic>Sheet metal</topic><topic>slow-wave structure (SWS)</topic><topic>Traveling wave tubes</topic><topic>traveling-wave tube (TWT)</topic><topic>Vacuum electronics</topic><topic>Waveguide discontinuities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahanian, Esmaeel</creatorcontrib><creatorcontrib>Dadashzadeh, Gholamreza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tahanian, Esmaeel</au><au>Dadashzadeh, Gholamreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-07</date><risdate>2016</risdate><volume>63</volume><issue>7</issue><spage>2912</spage><epage>2918</epage><pages>2912-2918</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a novel gap-groove folded-waveguide slow-wave structure (SWS) for high-efficiency G-band traveling-wave tube (TWT) is presented. In this novel tube, a sheet electron beam passes through the small gap between a bed of nails and a folded groove realized in a metallic plate. The bed of nails and the metallic plate form a high impedance structure-perfect electric conductor parallel plate waveguide, which prevents the fields from leaking transverse to the propagation direction. The phase velocity of the proposed SWS has been analytically calculated and the results show good agreement with those obtained using Eigenmode solver of computer simulation technology (CST). Meanwhile, the simulation results indicate that the interaction impedance of the proposed SWS is considerably higher than the conventional folded-waveguide SWS. Furthermore, employing a proper phase velocity taper in the end section of circuit leads to increasing the efficiency of the proposed TWT. According to Particle-in-cell simulations performed by the CST Particle Studio, the designed TWT can generate a peak power of 225 W at 220 GHz, corresponding to the maximum gain and efficiency of 42.7 dB and 14.9%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2564740</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0302-1918</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2016-07, Vol.63 (7), p.2912-2918
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_1825516179
source IEEE Electronic Library (IEL)
subjects Computer simulation
Devices
Efficiency
Electron beams
Folded waveguide (FW)
gap-groove waveguide (GGW)
Impedance
Mathematical analysis
Nails
Phase velocity
Plasma
Plates (structural members)
Rectangular waveguides
Sheet metal
slow-wave structure (SWS)
Traveling wave tubes
traveling-wave tube (TWT)
Vacuum electronics
Waveguide discontinuities
title A Novel Gap-Groove Folded-Waveguide Slow-Wave Structure for G-Band Traveling-Wave Tube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Gap-Groove%20Folded-Waveguide%20Slow-Wave%20Structure%20for%20G-Band%20Traveling-Wave%20Tube&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Tahanian,%20Esmaeel&rft.date=2016-07&rft.volume=63&rft.issue=7&rft.spage=2912&rft.epage=2918&rft.pages=2912-2918&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2564740&rft_dat=%3Cproquest_RIE%3E1825516179%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798894283&rft_id=info:pmid/&rft_ieee_id=7473920&rfr_iscdi=true