Simulation of an Inlet Structure of an Implantable Axial Blood Pump
The article presents a mathematical model of blood flow in the inlet apparatus of an axial pump to support the ventricle. The inlet apparatus includes a curved cannula and a fixed flow straightener with three or four blades. The main control parameters are the length of the inlet portion of the cann...
Gespeichert in:
Veröffentlicht in: | Biomedical engineering 2016-05, Vol.50 (1), p.15-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Biomedical engineering |
container_volume | 50 |
creator | Gouskov, A. M. Sorokin, F. D. Banin, E. P. |
description | The article presents a mathematical model of blood flow in the inlet apparatus of an axial pump to support the ventricle. The inlet apparatus includes a curved cannula and a fixed flow straightener with three or four blades. The main control parameters are the length of the inlet portion of the cannula, the length of the outlet portion of the cannula, the inner diameter, the bending angle of the cannula, and the radius of the knee. Flow velocity at the wall is considered to be zero. The flow of blood is considered to be stationary; transient processes are not considered. Blood is considered to be a single-phase incompressible viscous Newtonian fluid. The study aims at identifying the unevenness of the flow incident on the rotor blades and at identifying stagnation zones. According to the results of calculations with various geometrical parameters, a divider is installed in the inlet apparatus model to address identified effects. Variable parameters of the divider are the radius of curvature and the length of the straight section. |
doi_str_mv | 10.1007/s10527-016-9578-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825515669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498943805</galeid><sourcerecordid>A498943805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3982-92858660f4584657e5e90431155050d85300bb7deb1dba684003b0bf5d61efbd3</originalsourceid><addsrcrecordid>eNqNkkFr3DAQhUVJoZu0P6A3Qy_pwclI8kjycbuk6UIgpZuchWzLi4NsbSQZ0n9fLZvSbmghzEHM8L3RPHiEfKRwQQHkZaSATJZARVmjVCV7QxYUJS8VQ3FCFgAgSs5r9Y6cxviQW1SKLchqM4yzM2nwU-H7wkzFenI2FZsU5jbNwf6ejjtnpmQaZ4vl02Bc8cV53xXf53H3nrztjYv2w_N7Ru6_Xt2tvpU3t9fr1fKmbPO_rKyZQiUE9BWqSqC0aGuoOKWIgNAp5ABNIzvb0K4xQlUAvIGmx05Q2zcdPyPnh7274B9nG5Meh9halw-zfo6aZq9IUYj6FSgowaWQIqOfXqAPfg5TNqJpzYSSHCn7Q22Ns3qYep-CafdL9bKqVV1xBZipi39QuTo7Dq2fbD_k-ZHg85EgM8k-pa2ZY9TrzY9jlh7YNvgYg-31LgyjCT81Bb0PgT6EQOcQ6H0I9P5sdtDEzE5bG_4y91_RL55Drms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926873512</pqid></control><display><type>article</type><title>Simulation of an Inlet Structure of an Implantable Axial Blood Pump</title><source>Springer Nature - Complete Springer Journals</source><creator>Gouskov, A. M. ; Sorokin, F. D. ; Banin, E. P.</creator><creatorcontrib>Gouskov, A. M. ; Sorokin, F. D. ; Banin, E. P.</creatorcontrib><description>The article presents a mathematical model of blood flow in the inlet apparatus of an axial pump to support the ventricle. The inlet apparatus includes a curved cannula and a fixed flow straightener with three or four blades. The main control parameters are the length of the inlet portion of the cannula, the length of the outlet portion of the cannula, the inner diameter, the bending angle of the cannula, and the radius of the knee. Flow velocity at the wall is considered to be zero. The flow of blood is considered to be stationary; transient processes are not considered. Blood is considered to be a single-phase incompressible viscous Newtonian fluid. The study aims at identifying the unevenness of the flow incident on the rotor blades and at identifying stagnation zones. According to the results of calculations with various geometrical parameters, a divider is installed in the inlet apparatus model to address identified effects. Variable parameters of the divider are the radius of curvature and the length of the straight section.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-016-9578-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Axial flow pumps ; Biomaterials ; Biomedical Engineering and Bioengineering ; Blood ; Blood flow ; Computational fluid dynamics ; Computer simulation ; Dividers ; Engineering ; Flow velocity ; Fluid flow ; Incompressible flow ; Inlets ; Knee ; Mathematical models ; Medical materials ; Parameter identification ; Prostheses and implants ; Radius of curvature ; Rotor blades ; Rotor blades (turbomachinery) ; Stagnation ; Tubes ; Unevenness ; Ventricle</subject><ispartof>Biomedical engineering, 2016-05, Vol.50 (1), p.15-19</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3982-92858660f4584657e5e90431155050d85300bb7deb1dba684003b0bf5d61efbd3</citedby><cites>FETCH-LOGICAL-c3982-92858660f4584657e5e90431155050d85300bb7deb1dba684003b0bf5d61efbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10527-016-9578-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10527-016-9578-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gouskov, A. M.</creatorcontrib><creatorcontrib>Sorokin, F. D.</creatorcontrib><creatorcontrib>Banin, E. P.</creatorcontrib><title>Simulation of an Inlet Structure of an Implantable Axial Blood Pump</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>The article presents a mathematical model of blood flow in the inlet apparatus of an axial pump to support the ventricle. The inlet apparatus includes a curved cannula and a fixed flow straightener with three or four blades. The main control parameters are the length of the inlet portion of the cannula, the length of the outlet portion of the cannula, the inner diameter, the bending angle of the cannula, and the radius of the knee. Flow velocity at the wall is considered to be zero. The flow of blood is considered to be stationary; transient processes are not considered. Blood is considered to be a single-phase incompressible viscous Newtonian fluid. The study aims at identifying the unevenness of the flow incident on the rotor blades and at identifying stagnation zones. According to the results of calculations with various geometrical parameters, a divider is installed in the inlet apparatus model to address identified effects. Variable parameters of the divider are the radius of curvature and the length of the straight section.</description><subject>Analysis</subject><subject>Axial flow pumps</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dividers</subject><subject>Engineering</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Inlets</subject><subject>Knee</subject><subject>Mathematical models</subject><subject>Medical materials</subject><subject>Parameter identification</subject><subject>Prostheses and implants</subject><subject>Radius of curvature</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Stagnation</subject><subject>Tubes</subject><subject>Unevenness</subject><subject>Ventricle</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkFr3DAQhUVJoZu0P6A3Qy_pwclI8kjycbuk6UIgpZuchWzLi4NsbSQZ0n9fLZvSbmghzEHM8L3RPHiEfKRwQQHkZaSATJZARVmjVCV7QxYUJS8VQ3FCFgAgSs5r9Y6cxviQW1SKLchqM4yzM2nwU-H7wkzFenI2FZsU5jbNwf6ejjtnpmQaZ4vl02Bc8cV53xXf53H3nrztjYv2w_N7Ru6_Xt2tvpU3t9fr1fKmbPO_rKyZQiUE9BWqSqC0aGuoOKWIgNAp5ABNIzvb0K4xQlUAvIGmx05Q2zcdPyPnh7274B9nG5Meh9halw-zfo6aZq9IUYj6FSgowaWQIqOfXqAPfg5TNqJpzYSSHCn7Q22Ns3qYep-CafdL9bKqVV1xBZipi39QuTo7Dq2fbD_k-ZHg85EgM8k-pa2ZY9TrzY9jlh7YNvgYg-31LgyjCT81Bb0PgT6EQOcQ6H0I9P5sdtDEzE5bG_4y91_RL55Drms</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gouskov, A. M.</creator><creator>Sorokin, F. D.</creator><creator>Banin, E. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Simulation of an Inlet Structure of an Implantable Axial Blood Pump</title><author>Gouskov, A. M. ; Sorokin, F. D. ; Banin, E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3982-92858660f4584657e5e90431155050d85300bb7deb1dba684003b0bf5d61efbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Axial flow pumps</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dividers</topic><topic>Engineering</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Inlets</topic><topic>Knee</topic><topic>Mathematical models</topic><topic>Medical materials</topic><topic>Parameter identification</topic><topic>Prostheses and implants</topic><topic>Radius of curvature</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Stagnation</topic><topic>Tubes</topic><topic>Unevenness</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouskov, A. M.</creatorcontrib><creatorcontrib>Sorokin, F. D.</creatorcontrib><creatorcontrib>Banin, E. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouskov, A. M.</au><au>Sorokin, F. D.</au><au>Banin, E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of an Inlet Structure of an Implantable Axial Blood Pump</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>15</spage><epage>19</epage><pages>15-19</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>The article presents a mathematical model of blood flow in the inlet apparatus of an axial pump to support the ventricle. The inlet apparatus includes a curved cannula and a fixed flow straightener with three or four blades. The main control parameters are the length of the inlet portion of the cannula, the length of the outlet portion of the cannula, the inner diameter, the bending angle of the cannula, and the radius of the knee. Flow velocity at the wall is considered to be zero. The flow of blood is considered to be stationary; transient processes are not considered. Blood is considered to be a single-phase incompressible viscous Newtonian fluid. The study aims at identifying the unevenness of the flow incident on the rotor blades and at identifying stagnation zones. According to the results of calculations with various geometrical parameters, a divider is installed in the inlet apparatus model to address identified effects. Variable parameters of the divider are the radius of curvature and the length of the straight section.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-016-9578-2</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3398 |
ispartof | Biomedical engineering, 2016-05, Vol.50 (1), p.15-19 |
issn | 0006-3398 1573-8256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825515669 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Axial flow pumps Biomaterials Biomedical Engineering and Bioengineering Blood Blood flow Computational fluid dynamics Computer simulation Dividers Engineering Flow velocity Fluid flow Incompressible flow Inlets Knee Mathematical models Medical materials Parameter identification Prostheses and implants Radius of curvature Rotor blades Rotor blades (turbomachinery) Stagnation Tubes Unevenness Ventricle |
title | Simulation of an Inlet Structure of an Implantable Axial Blood Pump |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20an%20Inlet%20Structure%20of%20an%20Implantable%20Axial%20Blood%20Pump&rft.jtitle=Biomedical%20engineering&rft.au=Gouskov,%20A.%20M.&rft.date=2016-05-01&rft.volume=50&rft.issue=1&rft.spage=15&rft.epage=19&rft.pages=15-19&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-016-9578-2&rft_dat=%3Cgale_proqu%3EA498943805%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926873512&rft_id=info:pmid/&rft_galeid=A498943805&rfr_iscdi=true |