Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders

The microstructural evolution during spark plasma sintering of ultrafine WC–1 wt% Si (n-WC–Si) is presented. At 1323 K (T < TmSi), extensive stacking faults on the $\left\{ {10\bar 10} \right\}$ prismatic planes are observed. The defect microstructure can be described as a combined shear of $1/6\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2016-05, Vol.31 (10), p.1466-1476
Hauptverfasser: Kumar, A.K. Nanda, Subramanian, B., Kurokawa, Kazuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1476
container_issue 10
container_start_page 1466
container_title Journal of materials research
container_volume 31
creator Kumar, A.K. Nanda
Subramanian, B.
Kurokawa, Kazuya
description The microstructural evolution during spark plasma sintering of ultrafine WC–1 wt% Si (n-WC–Si) is presented. At 1323 K (T < TmSi), extensive stacking faults on the $\left\{ {10\bar 10} \right\}$ prismatic planes are observed. The defect microstructure can be described as a combined shear of $1/6\left\langle {\bar 12\bar 13} \right\rangle$ on the prism planes and simultaneous out-diffusion of carbon through the faults to the interparticle boundaries. At temperatures near TmSi (1673 K), a large fraction of abnormally grown platelets is observed. These platelets contain a single planar defect on their basal planes, described by a ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left\langle {10\bar 10} \right\rangle$ translation of the carbon atoms across a Σ1 grain boundary (GB). Three factors contribute to the abnormally high density of platelets: (i) the low-temperature prismatic dislocations interact to form facet-roughening steps/kinks that act as nucleation sites, (ii) a liquid phase triggers an increased growth rate in the vicinity of the Si inclusions, and (c) the basal twin produces a re-entrant edge for 2D nucleation.
doi_str_mv 10.1557/jmr.2016.130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825512301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2016_130</cupid><sourcerecordid>4070058711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-81a4ceb0ff47db70cc55404402001fb087bebfc5fda722b57eb6eef9d5b128b93</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1UJLaFGw9gqRcOzTJ24nVyRNtCkVbiAIijZTvjJdvETu2kVW-8A2_Ik-Bl91BVSL3MSKNvfs18hLxlsGRCyPe7IS45sNWSlfCCLDhUVSFKvjohC6jrquANq16R05R2AEyArBZkd4kO7UTTFGc7zREp3oV-nrrgqfYt1caHOOiebqPufK7hfvpJ2zl2fkvTqOMNHXudBk1T5yf8Nw6Oeu0D_bH-8-v3146O4b7FmF6Tl073Cd8c-xn5_vHq2_q62Hz59Hn9YVPYUpZTUTNdWTTgXCVbI8FaIar8CfB8tDNQS4PGWeFaLTk3QqJZIbqmFYbx2jTlGXl3yB1juJ0xTWroksW-1x7DnBSruRCMl8Ayev4E3YU5-nydYrLhwBsAyNTFgbIxpBTRqTF2g44PioHai1dZvNqLV1l8xosDnsa9DoyPQv_PL4_xejCxa7f4zMJf3SSW1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792029000</pqid></control><display><type>article</type><title>Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Kumar, A.K. Nanda ; Subramanian, B. ; Kurokawa, Kazuya</creator><creatorcontrib>Kumar, A.K. Nanda ; Subramanian, B. ; Kurokawa, Kazuya</creatorcontrib><description>The microstructural evolution during spark plasma sintering of ultrafine WC–1 wt% Si (n-WC–Si) is presented. At 1323 K (T &lt; TmSi), extensive stacking faults on the $\left\{ {10\bar 10} \right\}$ prismatic planes are observed. The defect microstructure can be described as a combined shear of $1/6\left\langle {\bar 12\bar 13} \right\rangle$ on the prism planes and simultaneous out-diffusion of carbon through the faults to the interparticle boundaries. At temperatures near TmSi (1673 K), a large fraction of abnormally grown platelets is observed. These platelets contain a single planar defect on their basal planes, described by a ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left\langle {10\bar 10} \right\rangle$ translation of the carbon atoms across a Σ1 grain boundary (GB). Three factors contribute to the abnormally high density of platelets: (i) the low-temperature prismatic dislocations interact to form facet-roughening steps/kinks that act as nucleation sites, (ii) a liquid phase triggers an increased growth rate in the vicinity of the Si inclusions, and (c) the basal twin produces a re-entrant edge for 2D nucleation.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2016.130</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Anisotropy ; Applied and Technical Physics ; Biomaterials ; Carbon ; Crystal defects ; Defects ; Evolution ; Grain boundaries ; Grain growth ; Inorganic Chemistry ; Interfaces ; Materials Engineering ; Materials research ; Materials Science ; Microstructure ; Nanomaterials ; Nanotechnology ; Phase transitions ; Planes ; Plasma sintering ; Platelets ; Silicon ; Spark plasma sintering ; Studies ; Temperature</subject><ispartof>Journal of materials research, 2016-05, Vol.31 (10), p.1466-1476</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-81a4ceb0ff47db70cc55404402001fb087bebfc5fda722b57eb6eef9d5b128b93</citedby><cites>FETCH-LOGICAL-c373t-81a4ceb0ff47db70cc55404402001fb087bebfc5fda722b57eb6eef9d5b128b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2016.130$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291416001308/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Kumar, A.K. Nanda</creatorcontrib><creatorcontrib>Subramanian, B.</creatorcontrib><creatorcontrib>Kurokawa, Kazuya</creatorcontrib><title>Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The microstructural evolution during spark plasma sintering of ultrafine WC–1 wt% Si (n-WC–Si) is presented. At 1323 K (T &lt; TmSi), extensive stacking faults on the $\left\{ {10\bar 10} \right\}$ prismatic planes are observed. The defect microstructure can be described as a combined shear of $1/6\left\langle {\bar 12\bar 13} \right\rangle$ on the prism planes and simultaneous out-diffusion of carbon through the faults to the interparticle boundaries. At temperatures near TmSi (1673 K), a large fraction of abnormally grown platelets is observed. These platelets contain a single planar defect on their basal planes, described by a ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left\langle {10\bar 10} \right\rangle$ translation of the carbon atoms across a Σ1 grain boundary (GB). Three factors contribute to the abnormally high density of platelets: (i) the low-temperature prismatic dislocations interact to form facet-roughening steps/kinks that act as nucleation sites, (ii) a liquid phase triggers an increased growth rate in the vicinity of the Si inclusions, and (c) the basal twin produces a re-entrant edge for 2D nucleation.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Inorganic Chemistry</subject><subject>Interfaces</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Planes</subject><subject>Plasma sintering</subject><subject>Platelets</subject><subject>Silicon</subject><subject>Spark plasma sintering</subject><subject>Studies</subject><subject>Temperature</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMFu1DAQhi1UJLaFGw9gqRcOzTJ24nVyRNtCkVbiAIijZTvjJdvETu2kVW-8A2_Ik-Bl91BVSL3MSKNvfs18hLxlsGRCyPe7IS45sNWSlfCCLDhUVSFKvjohC6jrquANq16R05R2AEyArBZkd4kO7UTTFGc7zREp3oV-nrrgqfYt1caHOOiebqPufK7hfvpJ2zl2fkvTqOMNHXudBk1T5yf8Nw6Oeu0D_bH-8-v3146O4b7FmF6Tl073Cd8c-xn5_vHq2_q62Hz59Hn9YVPYUpZTUTNdWTTgXCVbI8FaIar8CfB8tDNQS4PGWeFaLTk3QqJZIbqmFYbx2jTlGXl3yB1juJ0xTWroksW-1x7DnBSruRCMl8Ayev4E3YU5-nydYrLhwBsAyNTFgbIxpBTRqTF2g44PioHai1dZvNqLV1l8xosDnsa9DoyPQv_PL4_xejCxa7f4zMJf3SSW1Q</recordid><startdate>20160528</startdate><enddate>20160528</enddate><creator>Kumar, A.K. Nanda</creator><creator>Subramanian, B.</creator><creator>Kurokawa, Kazuya</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160528</creationdate><title>Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders</title><author>Kumar, A.K. Nanda ; Subramanian, B. ; Kurokawa, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-81a4ceb0ff47db70cc55404402001fb087bebfc5fda722b57eb6eef9d5b128b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Inorganic Chemistry</topic><topic>Interfaces</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Planes</topic><topic>Plasma sintering</topic><topic>Platelets</topic><topic>Silicon</topic><topic>Spark plasma sintering</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, A.K. Nanda</creatorcontrib><creatorcontrib>Subramanian, B.</creatorcontrib><creatorcontrib>Kurokawa, Kazuya</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, A.K. Nanda</au><au>Subramanian, B.</au><au>Kurokawa, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2016-05-28</date><risdate>2016</risdate><volume>31</volume><issue>10</issue><spage>1466</spage><epage>1476</epage><pages>1466-1476</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>The microstructural evolution during spark plasma sintering of ultrafine WC–1 wt% Si (n-WC–Si) is presented. At 1323 K (T &lt; TmSi), extensive stacking faults on the $\left\{ {10\bar 10} \right\}$ prismatic planes are observed. The defect microstructure can be described as a combined shear of $1/6\left\langle {\bar 12\bar 13} \right\rangle$ on the prism planes and simultaneous out-diffusion of carbon through the faults to the interparticle boundaries. At temperatures near TmSi (1673 K), a large fraction of abnormally grown platelets is observed. These platelets contain a single planar defect on their basal planes, described by a ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left\langle {10\bar 10} \right\rangle$ translation of the carbon atoms across a Σ1 grain boundary (GB). Three factors contribute to the abnormally high density of platelets: (i) the low-temperature prismatic dislocations interact to form facet-roughening steps/kinks that act as nucleation sites, (ii) a liquid phase triggers an increased growth rate in the vicinity of the Si inclusions, and (c) the basal twin produces a re-entrant edge for 2D nucleation.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2016.130</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2016-05, Vol.31 (10), p.1466-1476
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1825512301
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects Analysis
Anisotropy
Applied and Technical Physics
Biomaterials
Carbon
Crystal defects
Defects
Evolution
Grain boundaries
Grain growth
Inorganic Chemistry
Interfaces
Materials Engineering
Materials research
Materials Science
Microstructure
Nanomaterials
Nanotechnology
Phase transitions
Planes
Plasma sintering
Platelets
Silicon
Spark plasma sintering
Studies
Temperature
title Defect structure evolution and abnormal grain growth during spark plasma sintering of nano WC–Si powders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20structure%20evolution%20and%20abnormal%20grain%20growth%20during%20spark%20plasma%20sintering%20of%20nano%20WC%E2%80%93Si%20powders&rft.jtitle=Journal%20of%20materials%20research&rft.au=Kumar,%20A.K.%20Nanda&rft.date=2016-05-28&rft.volume=31&rft.issue=10&rft.spage=1466&rft.epage=1476&rft.pages=1466-1476&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2016.130&rft_dat=%3Cproquest_cross%3E4070058711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792029000&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2016_130&rfr_iscdi=true