Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation
Stainless‐steel rods were manufactured by laser additive manufacturing (LAM or “3D‐printing”) from a stainless‐steel (316 L) powder precursor, and then investigated and compared to conventional stainless steel in electrochemical experiments. The LAM method used in this study was based on “powder bed...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2016-06, Vol.3 (6), p.1020-1025 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1025 |
---|---|
container_issue | 6 |
container_start_page | 1020 |
container_title | ChemElectroChem |
container_volume | 3 |
creator | Weber, James Wain, Andrew J. Piili, Heidi Matilainen, Ville-Pekka Vuorema, Anne Attard, Gary A. Marken, Frank |
description | Stainless‐steel rods were manufactured by laser additive manufacturing (LAM or “3D‐printing”) from a stainless‐steel (316 L) powder precursor, and then investigated and compared to conventional stainless steel in electrochemical experiments. The LAM method used in this study was based on “powder bed fusion”, in which particles with an average diameter of 20–40 μm are fused to give stainless‐steel rods of 3 mm diameter. In contrast to conventional bulk stainless‐steel (316 L) electrodes, for 3D‐printed electrodes, small crevices in the surface provide residual porosity. Voltammetric features observed for the 3D‐printed electrodes immersed in aqueous phosphate buffer are consistent with those for conventional bulk stainless steel (316 L). Two chemically reversible surface processes were observed and tentatively attributed to Fe(II/III) phosphate and Cr(II/III) phosphate. Galvanic exchange is shown to allow improved platinum growth/adhesion onto the slightly porous 3D‐printed stainless‐steel surface, resulting in a mechanically robust and highly active porous platinum deposit with good catalytic activity toward methanol oxidation.
3D‐printed electrodes: 3D printing of alloy and, in particular, stainless‐steel electrodes offers new prototyping technology, but also new opportunities for electrodes to be produced with new properties. |
doi_str_mv | 10.1002/celc.201600098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825511982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4089361911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5358-9b321e9dcd6fce888cb1dec5643038d0a248793574c8ef2fd4a1d484f822fbad3</originalsourceid><addsrcrecordid>eNqFkE1PGzEQQFdVkUDAlbOlXnrZ4I9dr32MkjSgbNqID3G0HHu2NXXW1N5A8u9rlAqhXrh4fHhvNHpFcUHwiGBMLw14M6KYcIyxFJ-KE0okLzEl_PO7_3FxntJjRgjBNRP8pIAbSM5utUerEENywx6FDrFp2Y6X5Sq6fgCLbgfteg8plbcDgEczD2aIwUJCY-_DS0Jz7Z917wya7cwv3f8EtPJ6cL1L-Q39WXHUaZ_g_N88Le6_ze4mV2X7Y349GbelqVktSrlmlIC0xvLOgBDCrIkFU_OKYSYs1rQSjWR1UxkBHe1spYmtRNUJSru1tuy0-HrY-xTDny2kQW1cymm87iFskyKC1jUhUtCMfvkPfQzb2OfrFGkkb3iGZKZGB8rkOClCp56i2-i4VwSr1_DqNbx6C58FeRBenIf9B7SazNrJe7c8uC4NsHtzdfyteMOaWj18n6vFfNEuxWKqWvYXUoCWJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796769829</pqid></control><display><type>article</type><title>Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation</title><source>Access via Wiley Online Library</source><creator>Weber, James ; Wain, Andrew J. ; Piili, Heidi ; Matilainen, Ville-Pekka ; Vuorema, Anne ; Attard, Gary A. ; Marken, Frank</creator><creatorcontrib>Weber, James ; Wain, Andrew J. ; Piili, Heidi ; Matilainen, Ville-Pekka ; Vuorema, Anne ; Attard, Gary A. ; Marken, Frank</creatorcontrib><description>Stainless‐steel rods were manufactured by laser additive manufacturing (LAM or “3D‐printing”) from a stainless‐steel (316 L) powder precursor, and then investigated and compared to conventional stainless steel in electrochemical experiments. The LAM method used in this study was based on “powder bed fusion”, in which particles with an average diameter of 20–40 μm are fused to give stainless‐steel rods of 3 mm diameter. In contrast to conventional bulk stainless‐steel (316 L) electrodes, for 3D‐printed electrodes, small crevices in the surface provide residual porosity. Voltammetric features observed for the 3D‐printed electrodes immersed in aqueous phosphate buffer are consistent with those for conventional bulk stainless steel (316 L). Two chemically reversible surface processes were observed and tentatively attributed to Fe(II/III) phosphate and Cr(II/III) phosphate. Galvanic exchange is shown to allow improved platinum growth/adhesion onto the slightly porous 3D‐printed stainless‐steel surface, resulting in a mechanically robust and highly active porous platinum deposit with good catalytic activity toward methanol oxidation.
3D‐printed electrodes: 3D printing of alloy and, in particular, stainless‐steel electrodes offers new prototyping technology, but also new opportunities for electrodes to be produced with new properties.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201600098</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>3D printing ; additive manufacturing ; Austenitic stainless steels ; Electrodes ; Exchange ; fuel cells ; Heat resistant steels ; Phosphates ; powder bed fusion ; Rods ; stainless steel ; Stainless steels ; Surface chemistry</subject><ispartof>ChemElectroChem, 2016-06, Vol.3 (6), p.1020-1025</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5358-9b321e9dcd6fce888cb1dec5643038d0a248793574c8ef2fd4a1d484f822fbad3</citedby><cites>FETCH-LOGICAL-c5358-9b321e9dcd6fce888cb1dec5643038d0a248793574c8ef2fd4a1d484f822fbad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201600098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201600098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Wain, Andrew J.</creatorcontrib><creatorcontrib>Piili, Heidi</creatorcontrib><creatorcontrib>Matilainen, Ville-Pekka</creatorcontrib><creatorcontrib>Vuorema, Anne</creatorcontrib><creatorcontrib>Attard, Gary A.</creatorcontrib><creatorcontrib>Marken, Frank</creatorcontrib><title>Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation</title><title>ChemElectroChem</title><addtitle>ChemElectroChem</addtitle><description>Stainless‐steel rods were manufactured by laser additive manufacturing (LAM or “3D‐printing”) from a stainless‐steel (316 L) powder precursor, and then investigated and compared to conventional stainless steel in electrochemical experiments. The LAM method used in this study was based on “powder bed fusion”, in which particles with an average diameter of 20–40 μm are fused to give stainless‐steel rods of 3 mm diameter. In contrast to conventional bulk stainless‐steel (316 L) electrodes, for 3D‐printed electrodes, small crevices in the surface provide residual porosity. Voltammetric features observed for the 3D‐printed electrodes immersed in aqueous phosphate buffer are consistent with those for conventional bulk stainless steel (316 L). Two chemically reversible surface processes were observed and tentatively attributed to Fe(II/III) phosphate and Cr(II/III) phosphate. Galvanic exchange is shown to allow improved platinum growth/adhesion onto the slightly porous 3D‐printed stainless‐steel surface, resulting in a mechanically robust and highly active porous platinum deposit with good catalytic activity toward methanol oxidation.
3D‐printed electrodes: 3D printing of alloy and, in particular, stainless‐steel electrodes offers new prototyping technology, but also new opportunities for electrodes to be produced with new properties.</description><subject>3D printing</subject><subject>additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Electrodes</subject><subject>Exchange</subject><subject>fuel cells</subject><subject>Heat resistant steels</subject><subject>Phosphates</subject><subject>powder bed fusion</subject><subject>Rods</subject><subject>stainless steel</subject><subject>Stainless steels</subject><subject>Surface chemistry</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PGzEQQFdVkUDAlbOlXnrZ4I9dr32MkjSgbNqID3G0HHu2NXXW1N5A8u9rlAqhXrh4fHhvNHpFcUHwiGBMLw14M6KYcIyxFJ-KE0okLzEl_PO7_3FxntJjRgjBNRP8pIAbSM5utUerEENywx6FDrFp2Y6X5Sq6fgCLbgfteg8plbcDgEczD2aIwUJCY-_DS0Jz7Z917wya7cwv3f8EtPJ6cL1L-Q39WXHUaZ_g_N88Le6_ze4mV2X7Y349GbelqVktSrlmlIC0xvLOgBDCrIkFU_OKYSYs1rQSjWR1UxkBHe1spYmtRNUJSru1tuy0-HrY-xTDny2kQW1cymm87iFskyKC1jUhUtCMfvkPfQzb2OfrFGkkb3iGZKZGB8rkOClCp56i2-i4VwSr1_DqNbx6C58FeRBenIf9B7SazNrJe7c8uC4NsHtzdfyteMOaWj18n6vFfNEuxWKqWvYXUoCWJA</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Weber, James</creator><creator>Wain, Andrew J.</creator><creator>Piili, Heidi</creator><creator>Matilainen, Ville-Pekka</creator><creator>Vuorema, Anne</creator><creator>Attard, Gary A.</creator><creator>Marken, Frank</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201606</creationdate><title>Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation</title><author>Weber, James ; Wain, Andrew J. ; Piili, Heidi ; Matilainen, Ville-Pekka ; Vuorema, Anne ; Attard, Gary A. ; Marken, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5358-9b321e9dcd6fce888cb1dec5643038d0a248793574c8ef2fd4a1d484f822fbad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D printing</topic><topic>additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Electrodes</topic><topic>Exchange</topic><topic>fuel cells</topic><topic>Heat resistant steels</topic><topic>Phosphates</topic><topic>powder bed fusion</topic><topic>Rods</topic><topic>stainless steel</topic><topic>Stainless steels</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Wain, Andrew J.</creatorcontrib><creatorcontrib>Piili, Heidi</creatorcontrib><creatorcontrib>Matilainen, Ville-Pekka</creatorcontrib><creatorcontrib>Vuorema, Anne</creatorcontrib><creatorcontrib>Attard, Gary A.</creatorcontrib><creatorcontrib>Marken, Frank</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, James</au><au>Wain, Andrew J.</au><au>Piili, Heidi</au><au>Matilainen, Ville-Pekka</au><au>Vuorema, Anne</au><au>Attard, Gary A.</au><au>Marken, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation</atitle><jtitle>ChemElectroChem</jtitle><addtitle>ChemElectroChem</addtitle><date>2016-06</date><risdate>2016</risdate><volume>3</volume><issue>6</issue><spage>1020</spage><epage>1025</epage><pages>1020-1025</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Stainless‐steel rods were manufactured by laser additive manufacturing (LAM or “3D‐printing”) from a stainless‐steel (316 L) powder precursor, and then investigated and compared to conventional stainless steel in electrochemical experiments. The LAM method used in this study was based on “powder bed fusion”, in which particles with an average diameter of 20–40 μm are fused to give stainless‐steel rods of 3 mm diameter. In contrast to conventional bulk stainless‐steel (316 L) electrodes, for 3D‐printed electrodes, small crevices in the surface provide residual porosity. Voltammetric features observed for the 3D‐printed electrodes immersed in aqueous phosphate buffer are consistent with those for conventional bulk stainless steel (316 L). Two chemically reversible surface processes were observed and tentatively attributed to Fe(II/III) phosphate and Cr(II/III) phosphate. Galvanic exchange is shown to allow improved platinum growth/adhesion onto the slightly porous 3D‐printed stainless‐steel surface, resulting in a mechanically robust and highly active porous platinum deposit with good catalytic activity toward methanol oxidation.
3D‐printed electrodes: 3D printing of alloy and, in particular, stainless‐steel electrodes offers new prototyping technology, but also new opportunities for electrodes to be produced with new properties.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/celc.201600098</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2016-06, Vol.3 (6), p.1020-1025 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825511982 |
source | Access via Wiley Online Library |
subjects | 3D printing additive manufacturing Austenitic stainless steels Electrodes Exchange fuel cells Heat resistant steels Phosphates powder bed fusion Rods stainless steel Stainless steels Surface chemistry |
title | Residual Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Porosity%20of%203D-LAM-Printed%20Stainless-Steel%20Electrodes%20Allows%20Galvanic%20Exchange%20Platinisation&rft.jtitle=ChemElectroChem&rft.au=Weber,%20James&rft.date=2016-06&rft.volume=3&rft.issue=6&rft.spage=1020&rft.epage=1025&rft.pages=1020-1025&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201600098&rft_dat=%3Cproquest_cross%3E4089361911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796769829&rft_id=info:pmid/&rfr_iscdi=true |