Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps

By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2016-07, Vol.113, p.194-205
Hauptverfasser: Zhang, R.F., Beyerlein, I.J., Zheng, S.J., Zhang, S.H., Stukowski, A., Germann, T.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 194
container_title Acta materialia
container_volume 113
creator Zhang, R.F.
Beyerlein, I.J.
Zheng, S.J.
Zhang, S.H.
Stukowski, A.
Germann, T.C.
description By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials. [Display omitted]
doi_str_mv 10.1016/j.actamat.2016.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825511141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416303536</els_id><sourcerecordid>1825511141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYsoOI7-BCFLN61J0zTtSmTwBSNudGtIb280Q18mqTD_3gydvat7Lpxz4HxJcs1oxigrb3eZhqB7HbI8vhkVGWXiJFmxSvI0LwQ_jZqLOi0LUZwnF97vKGW5LOgq-XzVg53mTgc7fJHW-m6EqMeBDDN0uEg9tMR_o3bEobc-6AGQjIY0tsegO2KHgM5oQE-aPdFh7C0QH3Dyl8mZ0Z3Hq-NdJx-PD--b53T79vSyud-mUNAqpKaVyItcNlXFkLa1aQwAFBJzUZuct5KXQKkpZcVBN2Udd3KoZMNLCRUC8HVys_RObvyZ0QfVWw_YdXrAcfaKVbkQjLGCRatYrOBG7x0aNTnba7dXjKoDT7VTR57qwFNRoSLPmLtbchh3_Fp0yoPFSKK1DiGodrT_NPwBvq6DKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825511141</pqid></control><display><type>article</type><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</creator><creatorcontrib>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</creatorcontrib><description>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.05.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dislocation ; Dislocations ; Flats ; Interface ; MD simulations ; Mechanical strength ; Nucleation ; Plasticity ; Propagation ; Shear ; Shear strength ; Sliding ; Stepped</subject><ispartof>Acta materialia, 2016-07, Vol.113, p.194-205</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</citedby><cites>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</cites><orcidid>0000-0001-6750-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645416303536$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, R.F.</creatorcontrib><creatorcontrib>Beyerlein, I.J.</creatorcontrib><creatorcontrib>Zheng, S.J.</creatorcontrib><creatorcontrib>Zhang, S.H.</creatorcontrib><creatorcontrib>Stukowski, A.</creatorcontrib><creatorcontrib>Germann, T.C.</creatorcontrib><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><title>Acta materialia</title><description>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials. [Display omitted]</description><subject>Dislocation</subject><subject>Dislocations</subject><subject>Flats</subject><subject>Interface</subject><subject>MD simulations</subject><subject>Mechanical strength</subject><subject>Nucleation</subject><subject>Plasticity</subject><subject>Propagation</subject><subject>Shear</subject><subject>Shear strength</subject><subject>Sliding</subject><subject>Stepped</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYsoOI7-BCFLN61J0zTtSmTwBSNudGtIb280Q18mqTD_3gydvat7Lpxz4HxJcs1oxigrb3eZhqB7HbI8vhkVGWXiJFmxSvI0LwQ_jZqLOi0LUZwnF97vKGW5LOgq-XzVg53mTgc7fJHW-m6EqMeBDDN0uEg9tMR_o3bEobc-6AGQjIY0tsegO2KHgM5oQE-aPdFh7C0QH3Dyl8mZ0Z3Hq-NdJx-PD--b53T79vSyud-mUNAqpKaVyItcNlXFkLa1aQwAFBJzUZuct5KXQKkpZcVBN2Udd3KoZMNLCRUC8HVys_RObvyZ0QfVWw_YdXrAcfaKVbkQjLGCRatYrOBG7x0aNTnba7dXjKoDT7VTR57qwFNRoSLPmLtbchh3_Fp0yoPFSKK1DiGodrT_NPwBvq6DKg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zhang, R.F.</creator><creator>Beyerlein, I.J.</creator><creator>Zheng, S.J.</creator><creator>Zhang, S.H.</creator><creator>Stukowski, A.</creator><creator>Germann, T.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6750-3401</orcidid></search><sort><creationdate>20160701</creationdate><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><author>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dislocation</topic><topic>Dislocations</topic><topic>Flats</topic><topic>Interface</topic><topic>MD simulations</topic><topic>Mechanical strength</topic><topic>Nucleation</topic><topic>Plasticity</topic><topic>Propagation</topic><topic>Shear</topic><topic>Shear strength</topic><topic>Sliding</topic><topic>Stepped</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, R.F.</creatorcontrib><creatorcontrib>Beyerlein, I.J.</creatorcontrib><creatorcontrib>Zheng, S.J.</creatorcontrib><creatorcontrib>Zhang, S.H.</creatorcontrib><creatorcontrib>Stukowski, A.</creatorcontrib><creatorcontrib>Germann, T.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, R.F.</au><au>Beyerlein, I.J.</au><au>Zheng, S.J.</au><au>Zhang, S.H.</au><au>Stukowski, A.</au><au>Germann, T.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</atitle><jtitle>Acta materialia</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>113</volume><spage>194</spage><epage>205</epage><pages>194-205</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.05.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6750-3401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2016-07, Vol.113, p.194-205
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1825511141
source Elsevier ScienceDirect Journals
subjects Dislocation
Dislocations
Flats
Interface
MD simulations
Mechanical strength
Nucleation
Plasticity
Propagation
Shear
Shear strength
Sliding
Stepped
title Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20dislocation%20nucleation%20and%20shear%20resistance%20of%20bimetal%20interfaces%20by%20atomic%20steps&rft.jtitle=Acta%20materialia&rft.au=Zhang,%20R.F.&rft.date=2016-07-01&rft.volume=113&rft.spage=194&rft.epage=205&rft.pages=194-205&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.05.015&rft_dat=%3Cproquest_cross%3E1825511141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825511141&rft_id=info:pmid/&rft_els_id=S1359645416303536&rfr_iscdi=true