Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps
By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2016-07, Vol.113, p.194-205 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 194 |
container_title | Acta materialia |
container_volume | 113 |
creator | Zhang, R.F. Beyerlein, I.J. Zheng, S.J. Zhang, S.H. Stukowski, A. Germann, T.C. |
description | By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2016.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825511141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416303536</els_id><sourcerecordid>1825511141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYsoOI7-BCFLN61J0zTtSmTwBSNudGtIb280Q18mqTD_3gydvat7Lpxz4HxJcs1oxigrb3eZhqB7HbI8vhkVGWXiJFmxSvI0LwQ_jZqLOi0LUZwnF97vKGW5LOgq-XzVg53mTgc7fJHW-m6EqMeBDDN0uEg9tMR_o3bEobc-6AGQjIY0tsegO2KHgM5oQE-aPdFh7C0QH3Dyl8mZ0Z3Hq-NdJx-PD--b53T79vSyud-mUNAqpKaVyItcNlXFkLa1aQwAFBJzUZuct5KXQKkpZcVBN2Udd3KoZMNLCRUC8HVys_RObvyZ0QfVWw_YdXrAcfaKVbkQjLGCRatYrOBG7x0aNTnba7dXjKoDT7VTR57qwFNRoSLPmLtbchh3_Fp0yoPFSKK1DiGodrT_NPwBvq6DKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825511141</pqid></control><display><type>article</type><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</creator><creatorcontrib>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</creatorcontrib><description>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.05.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dislocation ; Dislocations ; Flats ; Interface ; MD simulations ; Mechanical strength ; Nucleation ; Plasticity ; Propagation ; Shear ; Shear strength ; Sliding ; Stepped</subject><ispartof>Acta materialia, 2016-07, Vol.113, p.194-205</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</citedby><cites>FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</cites><orcidid>0000-0001-6750-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645416303536$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, R.F.</creatorcontrib><creatorcontrib>Beyerlein, I.J.</creatorcontrib><creatorcontrib>Zheng, S.J.</creatorcontrib><creatorcontrib>Zhang, S.H.</creatorcontrib><creatorcontrib>Stukowski, A.</creatorcontrib><creatorcontrib>Germann, T.C.</creatorcontrib><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><title>Acta materialia</title><description>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials.
[Display omitted]</description><subject>Dislocation</subject><subject>Dislocations</subject><subject>Flats</subject><subject>Interface</subject><subject>MD simulations</subject><subject>Mechanical strength</subject><subject>Nucleation</subject><subject>Plasticity</subject><subject>Propagation</subject><subject>Shear</subject><subject>Shear strength</subject><subject>Sliding</subject><subject>Stepped</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYsoOI7-BCFLN61J0zTtSmTwBSNudGtIb280Q18mqTD_3gydvat7Lpxz4HxJcs1oxigrb3eZhqB7HbI8vhkVGWXiJFmxSvI0LwQ_jZqLOi0LUZwnF97vKGW5LOgq-XzVg53mTgc7fJHW-m6EqMeBDDN0uEg9tMR_o3bEobc-6AGQjIY0tsegO2KHgM5oQE-aPdFh7C0QH3Dyl8mZ0Z3Hq-NdJx-PD--b53T79vSyud-mUNAqpKaVyItcNlXFkLa1aQwAFBJzUZuct5KXQKkpZcVBN2Udd3KoZMNLCRUC8HVys_RObvyZ0QfVWw_YdXrAcfaKVbkQjLGCRatYrOBG7x0aNTnba7dXjKoDT7VTR57qwFNRoSLPmLtbchh3_Fp0yoPFSKK1DiGodrT_NPwBvq6DKg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zhang, R.F.</creator><creator>Beyerlein, I.J.</creator><creator>Zheng, S.J.</creator><creator>Zhang, S.H.</creator><creator>Stukowski, A.</creator><creator>Germann, T.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6750-3401</orcidid></search><sort><creationdate>20160701</creationdate><title>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</title><author>Zhang, R.F. ; Beyerlein, I.J. ; Zheng, S.J. ; Zhang, S.H. ; Stukowski, A. ; Germann, T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fd7e3427b881e0d9fbfccc47e259f23d736c00f6783cab692013c87b367c8ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dislocation</topic><topic>Dislocations</topic><topic>Flats</topic><topic>Interface</topic><topic>MD simulations</topic><topic>Mechanical strength</topic><topic>Nucleation</topic><topic>Plasticity</topic><topic>Propagation</topic><topic>Shear</topic><topic>Shear strength</topic><topic>Sliding</topic><topic>Stepped</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, R.F.</creatorcontrib><creatorcontrib>Beyerlein, I.J.</creatorcontrib><creatorcontrib>Zheng, S.J.</creatorcontrib><creatorcontrib>Zhang, S.H.</creatorcontrib><creatorcontrib>Stukowski, A.</creatorcontrib><creatorcontrib>Germann, T.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, R.F.</au><au>Beyerlein, I.J.</au><au>Zheng, S.J.</au><au>Zhang, S.H.</au><au>Stukowski, A.</au><au>Germann, T.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps</atitle><jtitle>Acta materialia</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>113</volume><spage>194</spage><epage>205</epage><pages>194-205</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a “climbing peak-to-valley” manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.05.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6750-3401</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2016-07, Vol.113, p.194-205 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825511141 |
source | Elsevier ScienceDirect Journals |
subjects | Dislocation Dislocations Flats Interface MD simulations Mechanical strength Nucleation Plasticity Propagation Shear Shear strength Sliding Stepped |
title | Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20dislocation%20nucleation%20and%20shear%20resistance%20of%20bimetal%20interfaces%20by%20atomic%20steps&rft.jtitle=Acta%20materialia&rft.au=Zhang,%20R.F.&rft.date=2016-07-01&rft.volume=113&rft.spage=194&rft.epage=205&rft.pages=194-205&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.05.015&rft_dat=%3Cproquest_cross%3E1825511141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825511141&rft_id=info:pmid/&rft_els_id=S1359645416303536&rfr_iscdi=true |