Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain
The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role i...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2016-06, Vol.141 (12), p.3746-3755 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3755 |
---|---|
container_issue | 12 |
container_start_page | 3746 |
container_title | Analyst (London) |
container_volume | 141 |
creator | Wakabayashi, Ken T Bruno, Michael J Bass, Caroline E Park, Jinwoo |
description | The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior. |
doi_str_mv | 10.1039/c6an00196c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825510067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795878789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cc0b45a0d94f52ee17950cae1f963d83070e755a2b0ae2678888ef510e7688033</originalsourceid><addsrcrecordid>eNqFkc1u3CAURlHVqpmm3fQBKpZVJbcXY7C9HI36EylKN8nausYXhRYbF5iRps-RBy6TpNkGFgju-Q6Lj7H3Aj4LkP0Xo3EBEL02L9hGSN1UStXdS7YBAFnVWjVn7E1Kv8pVgILX7KxuQcuuURt2t11X7wxmFxYeLLeYcpUMLtwcTRnwQ_AZ55lyPHIbIs-3xN3CD-4QuLnFiCZTdH-fBGHNRef9kdMh_KaJT2HF2S33qVM4eFsyoejyfqRoPJ1ip0nEzMeIbnnLXln0id49nufs5tvX692P6vLn94vd9rIyUotcGQNjoxCmvrGqJhJtr8AgCdtrOXUSWqBWKaxHQKp125VFVonyqrsOpDxnHx-8awx_9pTyMLtkyHtcKOzTILpaFRx0-zxa_u7asvuCfnpATQwpRbLDGt2M8TgIGE6FDTu9vbovbFfgD4_e_TjT9IT-b0j-AzdMkow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795878789</pqid></control><display><type>article</type><title>Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain</title><source>MEDLINE</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wakabayashi, Ken T ; Bruno, Michael J ; Bass, Caroline E ; Park, Jinwoo</creator><creatorcontrib>Wakabayashi, Ken T ; Bruno, Michael J ; Bass, Caroline E ; Park, Jinwoo</creatorcontrib><description>The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c6an00196c</identifier><identifier>PMID: 27063845</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Assessments ; Brain ; Control ; Disorders ; Dopamine ; Dopamine - physiology ; Electric Stimulation ; Joining ; Male ; Microelectrodes ; Micrometers ; Nucleus Accumbens - physiology ; Olfactory Tubercle - physiology ; Rats ; Rats, Sprague-Dawley ; Voltammetry</subject><ispartof>Analyst (London), 2016-06, Vol.141 (12), p.3746-3755</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cc0b45a0d94f52ee17950cae1f963d83070e755a2b0ae2678888ef510e7688033</citedby><cites>FETCH-LOGICAL-c361t-cc0b45a0d94f52ee17950cae1f963d83070e755a2b0ae2678888ef510e7688033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2818,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27063845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wakabayashi, Ken T</creatorcontrib><creatorcontrib>Bruno, Michael J</creatorcontrib><creatorcontrib>Bass, Caroline E</creatorcontrib><creatorcontrib>Park, Jinwoo</creatorcontrib><title>Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.</description><subject>Animals</subject><subject>Assessments</subject><subject>Brain</subject><subject>Control</subject><subject>Disorders</subject><subject>Dopamine</subject><subject>Dopamine - physiology</subject><subject>Electric Stimulation</subject><subject>Joining</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Micrometers</subject><subject>Nucleus Accumbens - physiology</subject><subject>Olfactory Tubercle - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Voltammetry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u3CAURlHVqpmm3fQBKpZVJbcXY7C9HI36EylKN8nausYXhRYbF5iRps-RBy6TpNkGFgju-Q6Lj7H3Aj4LkP0Xo3EBEL02L9hGSN1UStXdS7YBAFnVWjVn7E1Kv8pVgILX7KxuQcuuURt2t11X7wxmFxYeLLeYcpUMLtwcTRnwQ_AZ55lyPHIbIs-3xN3CD-4QuLnFiCZTdH-fBGHNRef9kdMh_KaJT2HF2S33qVM4eFsyoejyfqRoPJ1ip0nEzMeIbnnLXln0id49nufs5tvX692P6vLn94vd9rIyUotcGQNjoxCmvrGqJhJtr8AgCdtrOXUSWqBWKaxHQKp125VFVonyqrsOpDxnHx-8awx_9pTyMLtkyHtcKOzTILpaFRx0-zxa_u7asvuCfnpATQwpRbLDGt2M8TgIGE6FDTu9vbovbFfgD4_e_TjT9IT-b0j-AzdMkow</recordid><startdate>20160621</startdate><enddate>20160621</enddate><creator>Wakabayashi, Ken T</creator><creator>Bruno, Michael J</creator><creator>Bass, Caroline E</creator><creator>Park, Jinwoo</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160621</creationdate><title>Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain</title><author>Wakabayashi, Ken T ; Bruno, Michael J ; Bass, Caroline E ; Park, Jinwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cc0b45a0d94f52ee17950cae1f963d83070e755a2b0ae2678888ef510e7688033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Assessments</topic><topic>Brain</topic><topic>Control</topic><topic>Disorders</topic><topic>Dopamine</topic><topic>Dopamine - physiology</topic><topic>Electric Stimulation</topic><topic>Joining</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Micrometers</topic><topic>Nucleus Accumbens - physiology</topic><topic>Olfactory Tubercle - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakabayashi, Ken T</creatorcontrib><creatorcontrib>Bruno, Michael J</creatorcontrib><creatorcontrib>Bass, Caroline E</creatorcontrib><creatorcontrib>Park, Jinwoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakabayashi, Ken T</au><au>Bruno, Michael J</au><au>Bass, Caroline E</au><au>Park, Jinwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2016-06-21</date><risdate>2016</risdate><volume>141</volume><issue>12</issue><spage>3746</spage><epage>3755</epage><pages>3746-3755</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.</abstract><cop>England</cop><pmid>27063845</pmid><doi>10.1039/c6an00196c</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2016-06, Vol.141 (12), p.3746-3755 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825510067 |
source | MEDLINE; Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Assessments Brain Control Disorders Dopamine Dopamine - physiology Electric Stimulation Joining Male Microelectrodes Micrometers Nucleus Accumbens - physiology Olfactory Tubercle - physiology Rats Rats, Sprague-Dawley Voltammetry |
title | Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20fast-scan%20cyclic%20voltammetry%20for%20the%20in%20vivo%20characterization%20of%20optically%20evoked%20dopamine%20in%20the%20olfactory%20tubercle%20of%20the%20rat%20brain&rft.jtitle=Analyst%20(London)&rft.au=Wakabayashi,%20Ken%20T&rft.date=2016-06-21&rft.volume=141&rft.issue=12&rft.spage=3746&rft.epage=3755&rft.pages=3746-3755&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c6an00196c&rft_dat=%3Cproquest_cross%3E1795878789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795878789&rft_id=info:pmid/27063845&rfr_iscdi=true |