Subgradients of the Value Function in a Parametric Convex Optimal Control Problem
Motivated by our recent works on the optimal value function in parametric optimal control problems under linear state equations, in this paper we study of the first-order behavior of the value function of a parametric convex optimal control problem with a convex cost function and linear state equati...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2016-07, Vol.170 (1), p.43-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Journal of optimization theory and applications |
container_volume | 170 |
creator | Thuy, Le Quang Toan, Nguyen Thi |
description | Motivated by our recent works on the optimal value function in parametric optimal control problems under linear state equations, in this paper we study of the first-order behavior of the value function of a parametric convex optimal control problem with a convex cost function and linear state equations. By establishing an abstract result on the subdifferential of the value function to a parametric convex mathematical programming problem, we derive a formula for computing the subdifferential and the singular subdifferential of the value function to a parametric convex optimal control problem. By virtue of the convexity, several assumptions used in the above papers, like the existence of a local upper Lipschitzian selection of the solution map, as well as the V-inner semicontinuity of the solution map, are no longer needed. |
doi_str_mv | 10.1007/s10957-016-0921-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825509788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825509788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fc1b96ca4c44e285528359453e7ec55a3578edfaab0a2ecdfba16fa021b2df683</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BL16qSdo0yVEWV4WFXfHjGtJ0snZpmzVpRf-9LfUggqdh4HlfZh6Ezim5ooSI60iJ4iIhNE-IYjRhB2hGuUgTJoU8RDNCGEtSlqpjdBLjjhCipMhm6PGpL7bBlBW0XcTe4e4N8Kupe8DLvrVd5VtctdjgjQmmgS5UFi98-wGfeL3vqsbU49oFX-NN8EUNzSk6cqaOcPYz5-hlefu8uE9W67uHxc0qsWmmusRZWqjcmsxmGTDJOZMpVxlPQYDl3KRcSCidMQUxDGzpCkNzZwijBStdLtM5upx698G_9xA73VTRQl2bFnwfNZWMc6KEHNGLP-jO96EdrtNUKJFzkbNsoOhE2eBjDOD0PgwPhi9NiR4l60myHiTrUbJmQ4ZNmTiw7RbCr-Z_Q98_xn77</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797657624</pqid></control><display><type>article</type><title>Subgradients of the Value Function in a Parametric Convex Optimal Control Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thuy, Le Quang ; Toan, Nguyen Thi</creator><creatorcontrib>Thuy, Le Quang ; Toan, Nguyen Thi</creatorcontrib><description>Motivated by our recent works on the optimal value function in parametric optimal control problems under linear state equations, in this paper we study of the first-order behavior of the value function of a parametric convex optimal control problem with a convex cost function and linear state equations. By establishing an abstract result on the subdifferential of the value function to a parametric convex mathematical programming problem, we derive a formula for computing the subdifferential and the singular subdifferential of the value function to a parametric convex optimal control problem. By virtue of the convexity, several assumptions used in the above papers, like the existence of a local upper Lipschitzian selection of the solution map, as well as the V-inner semicontinuity of the solution map, are no longer needed.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-016-0921-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computation ; Control theory ; Differential equations ; Engineering ; Equations of state ; Formulas (mathematics) ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2016-07, Vol.170 (1), p.43-64</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fc1b96ca4c44e285528359453e7ec55a3578edfaab0a2ecdfba16fa021b2df683</citedby><cites>FETCH-LOGICAL-c349t-fc1b96ca4c44e285528359453e7ec55a3578edfaab0a2ecdfba16fa021b2df683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-016-0921-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-016-0921-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Thuy, Le Quang</creatorcontrib><creatorcontrib>Toan, Nguyen Thi</creatorcontrib><title>Subgradients of the Value Function in a Parametric Convex Optimal Control Problem</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>Motivated by our recent works on the optimal value function in parametric optimal control problems under linear state equations, in this paper we study of the first-order behavior of the value function of a parametric convex optimal control problem with a convex cost function and linear state equations. By establishing an abstract result on the subdifferential of the value function to a parametric convex mathematical programming problem, we derive a formula for computing the subdifferential and the singular subdifferential of the value function to a parametric convex optimal control problem. By virtue of the convexity, several assumptions used in the above papers, like the existence of a local upper Lipschitzian selection of the solution map, as well as the V-inner semicontinuity of the solution map, are no longer needed.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computation</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Equations of state</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BL16qSdo0yVEWV4WFXfHjGtJ0snZpmzVpRf-9LfUggqdh4HlfZh6Ezim5ooSI60iJ4iIhNE-IYjRhB2hGuUgTJoU8RDNCGEtSlqpjdBLjjhCipMhm6PGpL7bBlBW0XcTe4e4N8Kupe8DLvrVd5VtctdjgjQmmgS5UFi98-wGfeL3vqsbU49oFX-NN8EUNzSk6cqaOcPYz5-hlefu8uE9W67uHxc0qsWmmusRZWqjcmsxmGTDJOZMpVxlPQYDl3KRcSCidMQUxDGzpCkNzZwijBStdLtM5upx698G_9xA73VTRQl2bFnwfNZWMc6KEHNGLP-jO96EdrtNUKJFzkbNsoOhE2eBjDOD0PgwPhi9NiR4l60myHiTrUbJmQ4ZNmTiw7RbCr-Z_Q98_xn77</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Thuy, Le Quang</creator><creator>Toan, Nguyen Thi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160701</creationdate><title>Subgradients of the Value Function in a Parametric Convex Optimal Control Problem</title><author>Thuy, Le Quang ; Toan, Nguyen Thi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fc1b96ca4c44e285528359453e7ec55a3578edfaab0a2ecdfba16fa021b2df683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computation</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Equations of state</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thuy, Le Quang</creatorcontrib><creatorcontrib>Toan, Nguyen Thi</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thuy, Le Quang</au><au>Toan, Nguyen Thi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgradients of the Value Function in a Parametric Convex Optimal Control Problem</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>170</volume><issue>1</issue><spage>43</spage><epage>64</epage><pages>43-64</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>Motivated by our recent works on the optimal value function in parametric optimal control problems under linear state equations, in this paper we study of the first-order behavior of the value function of a parametric convex optimal control problem with a convex cost function and linear state equations. By establishing an abstract result on the subdifferential of the value function to a parametric convex mathematical programming problem, we derive a formula for computing the subdifferential and the singular subdifferential of the value function to a parametric convex optimal control problem. By virtue of the convexity, several assumptions used in the above papers, like the existence of a local upper Lipschitzian selection of the solution map, as well as the V-inner semicontinuity of the solution map, are no longer needed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-016-0921-2</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2016-07, Vol.170 (1), p.43-64 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825509788 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computation Control theory Differential equations Engineering Equations of state Formulas (mathematics) Mathematical analysis Mathematical functions Mathematical models Mathematical programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimal control Optimization Studies Theory of Computation |
title | Subgradients of the Value Function in a Parametric Convex Optimal Control Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgradients%20of%20the%20Value%20Function%20in%20a%20Parametric%20Convex%20Optimal%20Control%20Problem&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Thuy,%20Le%20Quang&rft.date=2016-07-01&rft.volume=170&rft.issue=1&rft.spage=43&rft.epage=64&rft.pages=43-64&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-016-0921-2&rft_dat=%3Cproquest_cross%3E1825509788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797657624&rft_id=info:pmid/&rfr_iscdi=true |