Monitoring Magnetic Nanoparticles in the Body

In this paper we present a new method for the monitoring of super-paramagnetic nanoparticles (SPANs) in the body. Nowadays, reliable and inexpensive device and method for monitoring the spatial distribution of SPANs in the body are not present in the market of clinical imaging equipments. Importantl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science Forum 2016-05, Vol.856, p.85-91
Hauptverfasser: Ferraro, Angelo, Mamalis, Athanasios G., Hristoforou, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 85
container_title Materials Science Forum
container_volume 856
creator Ferraro, Angelo
Mamalis, Athanasios G.
Hristoforou, Evangelos
description In this paper we present a new method for the monitoring of super-paramagnetic nanoparticles (SPANs) in the body. Nowadays, reliable and inexpensive device and method for monitoring the spatial distribution of SPANs in the body are not present in the market of clinical imaging equipments. Importantly, since SPANs can be conjugated to a huge variety of organic (antibodies, proteins, synthetic polymers) and inorganic molecules they can be used to selectively detect targets (e.g. cancer cells) with striking specificity. The existing imaging methods used for clinical diagnostic purposes are the nuclear magnetic resonance (NMR) and computerized axial tomography scan (CAT or CT scan). Detection of SPANs with these methods is still controversial and most import they used strong magnetic field and harmful X-ray radiation, respectively, and the cost for a single analysis is high as well. Herein we describe an innovative magnetic method promises the measurement of the distribution of SPANs with sensitivity quite better than 1 μm3. The method (patented device by our group) is based on magnetic excitation and consequent detection of nanoparticles using super-conducting or magnetic sensors (magnetometers). The device is innovative and novel, and could be considered as a universal breakthrough in tumor diagnosis. Possible other applications could be simultaneous killing of the cancer cells applying inductive heating techniques.
doi_str_mv 10.4028/www.scientific.net/MSF.856.85
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825509403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4061703081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2415-93931a903b22efdde84c37c1887826f389ee5ad60a9f5fedc2482b6bcefc99a3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsNb-hwER3MyYx-S1ENFiVWh1YfchzWTalDapyZTSf2-kguLKxeXexTnn3vsBcIVgVUMsbna7XZWMs75zrTOVt93N5H1UCcpyHYEeYgyXklN8DAaSCwIJ5Qhixk9AD2JKS1pzdgbOU1pCSJBArAfKSfCuC9H5eTHR85zpTPGqfdjomMeVTYXzRbewxUNo9hfgtNWrZAffvQ-mo8fp8Lkcvz29DO_HpcE1oqUkkiAtIZlhbNumsaI2hBskBBeYtURIa6luGNSypa1tskvgGZsZ2xopNemD60PsJoaPrU2dWrtk7GqlvQ3bpJDI30BZQ5Kll3-ky7CNPh-nEBdSMl5DkVW3B5WJIaVoW7WJbq3jXiGovtiqzFb9sFWZg8psVWabK_vvDv4uap86axa_1vwr4ROKlIdv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789967408</pqid></control><display><type>article</type><title>Monitoring Magnetic Nanoparticles in the Body</title><source>Scientific.net Journals</source><creator>Ferraro, Angelo ; Mamalis, Athanasios G. ; Hristoforou, Evangelos</creator><creatorcontrib>Ferraro, Angelo ; Mamalis, Athanasios G. ; Hristoforou, Evangelos</creatorcontrib><description>In this paper we present a new method for the monitoring of super-paramagnetic nanoparticles (SPANs) in the body. Nowadays, reliable and inexpensive device and method for monitoring the spatial distribution of SPANs in the body are not present in the market of clinical imaging equipments. Importantly, since SPANs can be conjugated to a huge variety of organic (antibodies, proteins, synthetic polymers) and inorganic molecules they can be used to selectively detect targets (e.g. cancer cells) with striking specificity. The existing imaging methods used for clinical diagnostic purposes are the nuclear magnetic resonance (NMR) and computerized axial tomography scan (CAT or CT scan). Detection of SPANs with these methods is still controversial and most import they used strong magnetic field and harmful X-ray radiation, respectively, and the cost for a single analysis is high as well. Herein we describe an innovative magnetic method promises the measurement of the distribution of SPANs with sensitivity quite better than 1 μm3. The method (patented device by our group) is based on magnetic excitation and consequent detection of nanoparticles using super-conducting or magnetic sensors (magnetometers). The device is innovative and novel, and could be considered as a universal breakthrough in tumor diagnosis. Possible other applications could be simultaneous killing of the cancer cells applying inductive heating techniques.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>ISBN: 9783035710267</identifier><identifier>ISBN: 3035710260</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.856.85</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Cancer ; Cost analysis ; Devices ; Imaging ; Markets ; Monitoring ; Nanoparticles ; Nuclear magnetic resonance</subject><ispartof>Materials Science Forum, 2016-05, Vol.856, p.85-91</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. May 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4033?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Mamalis, Athanasios G.</creatorcontrib><creatorcontrib>Hristoforou, Evangelos</creatorcontrib><title>Monitoring Magnetic Nanoparticles in the Body</title><title>Materials Science Forum</title><description>In this paper we present a new method for the monitoring of super-paramagnetic nanoparticles (SPANs) in the body. Nowadays, reliable and inexpensive device and method for monitoring the spatial distribution of SPANs in the body are not present in the market of clinical imaging equipments. Importantly, since SPANs can be conjugated to a huge variety of organic (antibodies, proteins, synthetic polymers) and inorganic molecules they can be used to selectively detect targets (e.g. cancer cells) with striking specificity. The existing imaging methods used for clinical diagnostic purposes are the nuclear magnetic resonance (NMR) and computerized axial tomography scan (CAT or CT scan). Detection of SPANs with these methods is still controversial and most import they used strong magnetic field and harmful X-ray radiation, respectively, and the cost for a single analysis is high as well. Herein we describe an innovative magnetic method promises the measurement of the distribution of SPANs with sensitivity quite better than 1 μm3. The method (patented device by our group) is based on magnetic excitation and consequent detection of nanoparticles using super-conducting or magnetic sensors (magnetometers). The device is innovative and novel, and could be considered as a universal breakthrough in tumor diagnosis. Possible other applications could be simultaneous killing of the cancer cells applying inductive heating techniques.</description><subject>Cancer</subject><subject>Cost analysis</subject><subject>Devices</subject><subject>Imaging</subject><subject>Markets</subject><subject>Monitoring</subject><subject>Nanoparticles</subject><subject>Nuclear magnetic resonance</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><isbn>9783035710267</isbn><isbn>3035710260</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkEtLAzEUhYMPsNb-hwER3MyYx-S1ENFiVWh1YfchzWTalDapyZTSf2-kguLKxeXexTnn3vsBcIVgVUMsbna7XZWMs75zrTOVt93N5H1UCcpyHYEeYgyXklN8DAaSCwIJ5Qhixk9AD2JKS1pzdgbOU1pCSJBArAfKSfCuC9H5eTHR85zpTPGqfdjomMeVTYXzRbewxUNo9hfgtNWrZAffvQ-mo8fp8Lkcvz29DO_HpcE1oqUkkiAtIZlhbNumsaI2hBskBBeYtURIa6luGNSypa1tskvgGZsZ2xopNemD60PsJoaPrU2dWrtk7GqlvQ3bpJDI30BZQ5Kll3-ky7CNPh-nEBdSMl5DkVW3B5WJIaVoW7WJbq3jXiGovtiqzFb9sFWZg8psVWabK_vvDv4uap86axa_1vwr4ROKlIdv</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Ferraro, Angelo</creator><creator>Mamalis, Athanasios G.</creator><creator>Hristoforou, Evangelos</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>Monitoring Magnetic Nanoparticles in the Body</title><author>Ferraro, Angelo ; Mamalis, Athanasios G. ; Hristoforou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2415-93931a903b22efdde84c37c1887826f389ee5ad60a9f5fedc2482b6bcefc99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cancer</topic><topic>Cost analysis</topic><topic>Devices</topic><topic>Imaging</topic><topic>Markets</topic><topic>Monitoring</topic><topic>Nanoparticles</topic><topic>Nuclear magnetic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Mamalis, Athanasios G.</creatorcontrib><creatorcontrib>Hristoforou, Evangelos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials Science Forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraro, Angelo</au><au>Mamalis, Athanasios G.</au><au>Hristoforou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Magnetic Nanoparticles in the Body</atitle><jtitle>Materials Science Forum</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>856</volume><spage>85</spage><epage>91</epage><pages>85-91</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><isbn>9783035710267</isbn><isbn>3035710260</isbn><abstract>In this paper we present a new method for the monitoring of super-paramagnetic nanoparticles (SPANs) in the body. Nowadays, reliable and inexpensive device and method for monitoring the spatial distribution of SPANs in the body are not present in the market of clinical imaging equipments. Importantly, since SPANs can be conjugated to a huge variety of organic (antibodies, proteins, synthetic polymers) and inorganic molecules they can be used to selectively detect targets (e.g. cancer cells) with striking specificity. The existing imaging methods used for clinical diagnostic purposes are the nuclear magnetic resonance (NMR) and computerized axial tomography scan (CAT or CT scan). Detection of SPANs with these methods is still controversial and most import they used strong magnetic field and harmful X-ray radiation, respectively, and the cost for a single analysis is high as well. Herein we describe an innovative magnetic method promises the measurement of the distribution of SPANs with sensitivity quite better than 1 μm3. The method (patented device by our group) is based on magnetic excitation and consequent detection of nanoparticles using super-conducting or magnetic sensors (magnetometers). The device is innovative and novel, and could be considered as a universal breakthrough in tumor diagnosis. Possible other applications could be simultaneous killing of the cancer cells applying inductive heating techniques.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.856.85</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials Science Forum, 2016-05, Vol.856, p.85-91
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_1825509403
source Scientific.net Journals
subjects Cancer
Cost analysis
Devices
Imaging
Markets
Monitoring
Nanoparticles
Nuclear magnetic resonance
title Monitoring Magnetic Nanoparticles in the Body
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Magnetic%20Nanoparticles%20in%20the%20Body&rft.jtitle=Materials%20Science%20Forum&rft.au=Ferraro,%20Angelo&rft.date=2016-05-01&rft.volume=856&rft.spage=85&rft.epage=91&rft.pages=85-91&rft.issn=0255-5476&rft.eissn=1662-9752&rft.isbn=9783035710267&rft.isbn_list=3035710260&rft_id=info:doi/10.4028/www.scientific.net/MSF.856.85&rft_dat=%3Cproquest_cross%3E4061703081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789967408&rft_id=info:pmid/&rfr_iscdi=true