Identification and interpretation of nonnormality in atmospheric time series

Nonnormal characteristics of geophysical time series are important determinants of extreme events and may provide insight into the underlying dynamics of a system. The structure of nonnormality in winter temperature is examined through the use of linear filtering of radiosonde temperature time serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-05, Vol.43 (10), p.5425-5434
Hauptverfasser: Proistosescu, Cristian, Rhines, Andrew, Huybers, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5434
container_issue 10
container_start_page 5425
container_title Geophysical research letters
container_volume 43
creator Proistosescu, Cristian
Rhines, Andrew
Huybers, Peter
description Nonnormal characteristics of geophysical time series are important determinants of extreme events and may provide insight into the underlying dynamics of a system. The structure of nonnormality in winter temperature is examined through the use of linear filtering of radiosonde temperature time series. Filtering either low or high frequencies generally suppresses what is otherwise statistically significant nonnormal variability in temperature. The structure of nonnormality is partly attributable to geometric relations between filtering and the appearance of skewness, kurtosis, and higher order moments in time series data, and partly attributable to the presence of nonnormal temperature variations at the highest resolved frequencies in the presence of atmospheric memory. A nonnormal autoregressive model and a multiplicative noise model are both consistent with the observed frequency structure of nonnormality. These results suggest that the generating mechanism for nonnormal variations does not necessarily act at the frequencies at which greatest nonnormality is observed. Key Points Atmospheric temperature variability is nonnormal on daily time scales Apparent normal variability on synoptic scales is an artifact of filtering Generating mechanism for nonnormality does not necessarily act at frequency where greatest nonnormality is observed
doi_str_mv 10.1002/2016GL068880
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825509400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808704854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-a288f1a7d18bee194fcc80320b4bba44eb141a53ad0b672f8b91e7d300d8ed853</originalsourceid><addsrcrecordid>eNqF0cFq3DAQBmBRUuhmm1sewJBLD9l2RpLt0bEsyTZgKJT2bGR7TLXY0kbyEvbto7I5hBzS0wyjDzE_I8Q1wlcEkN8kYLVroCIi-CBWaLTeEEB9IVYAJveyrj6Jy5T2AKBA4Uo0DwP7xY2ut4sLvrB-KJxfOB4iL-dRGAsfvA9xtpNbTvm5sMsc0uEvR9cXi5u5SLnl9Fl8HO2U-OqlrsWf-7vf2x-b5ufuYfu92fRakdlYSTSirQekjjlvOfY9gZLQ6a6zWnOHGm2p7ABdVcuROoNcDwpgIB6oVGvx5fzvIYbHI6elnV3qeZqs53BMLZIsyxw4h_w_BapBU6kzvXlD9-EYfQ7SokGUqAy-r2pT65LIyKxuz6qPIaXIY3uIbrbx1CK0_27Vvr5V5vLMn9zEp3dtu_vV5GUro54BJwWTrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797458892</pqid></control><display><type>article</type><title>Identification and interpretation of nonnormality in atmospheric time series</title><source>Wiley Online Library Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><creator>Proistosescu, Cristian ; Rhines, Andrew ; Huybers, Peter</creator><creatorcontrib>Proistosescu, Cristian ; Rhines, Andrew ; Huybers, Peter</creatorcontrib><description>Nonnormal characteristics of geophysical time series are important determinants of extreme events and may provide insight into the underlying dynamics of a system. The structure of nonnormality in winter temperature is examined through the use of linear filtering of radiosonde temperature time series. Filtering either low or high frequencies generally suppresses what is otherwise statistically significant nonnormal variability in temperature. The structure of nonnormality is partly attributable to geometric relations between filtering and the appearance of skewness, kurtosis, and higher order moments in time series data, and partly attributable to the presence of nonnormal temperature variations at the highest resolved frequencies in the presence of atmospheric memory. A nonnormal autoregressive model and a multiplicative noise model are both consistent with the observed frequency structure of nonnormality. These results suggest that the generating mechanism for nonnormal variations does not necessarily act at the frequencies at which greatest nonnormality is observed. Key Points Atmospheric temperature variability is nonnormal on daily time scales Apparent normal variability on synoptic scales is an artifact of filtering Generating mechanism for nonnormality does not necessarily act at frequency where greatest nonnormality is observed</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068880</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Annual variations ; Atmospherics ; Autoregressive models ; Autoregressive processes ; Determinants ; Dynamical systems ; Dynamics ; Filtering ; Filtration ; Geophysics ; High frequencies ; Identification ; Kurtosis ; Noise prediction ; nonnormality ; non‐Gaussianity ; Radiosonde temperature ; Radiosondes ; Skewness ; spectral analysis ; Statistical analysis ; Temperature ; temperature distributions ; Temperature effects ; Temperature variations ; Time series ; Variability ; Winter ; Winter temperatures</subject><ispartof>Geophysical research letters, 2016-05, Vol.43 (10), p.5425-5434</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-a288f1a7d18bee194fcc80320b4bba44eb141a53ad0b672f8b91e7d300d8ed853</citedby><cites>FETCH-LOGICAL-c4389-a288f1a7d18bee194fcc80320b4bba44eb141a53ad0b672f8b91e7d300d8ed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068880$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068880$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Proistosescu, Cristian</creatorcontrib><creatorcontrib>Rhines, Andrew</creatorcontrib><creatorcontrib>Huybers, Peter</creatorcontrib><title>Identification and interpretation of nonnormality in atmospheric time series</title><title>Geophysical research letters</title><description>Nonnormal characteristics of geophysical time series are important determinants of extreme events and may provide insight into the underlying dynamics of a system. The structure of nonnormality in winter temperature is examined through the use of linear filtering of radiosonde temperature time series. Filtering either low or high frequencies generally suppresses what is otherwise statistically significant nonnormal variability in temperature. The structure of nonnormality is partly attributable to geometric relations between filtering and the appearance of skewness, kurtosis, and higher order moments in time series data, and partly attributable to the presence of nonnormal temperature variations at the highest resolved frequencies in the presence of atmospheric memory. A nonnormal autoregressive model and a multiplicative noise model are both consistent with the observed frequency structure of nonnormality. These results suggest that the generating mechanism for nonnormal variations does not necessarily act at the frequencies at which greatest nonnormality is observed. Key Points Atmospheric temperature variability is nonnormal on daily time scales Apparent normal variability on synoptic scales is an artifact of filtering Generating mechanism for nonnormality does not necessarily act at frequency where greatest nonnormality is observed</description><subject>Annual variations</subject><subject>Atmospherics</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Determinants</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Geophysics</subject><subject>High frequencies</subject><subject>Identification</subject><subject>Kurtosis</subject><subject>Noise prediction</subject><subject>nonnormality</subject><subject>non‐Gaussianity</subject><subject>Radiosonde temperature</subject><subject>Radiosondes</subject><subject>Skewness</subject><subject>spectral analysis</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>temperature distributions</subject><subject>Temperature effects</subject><subject>Temperature variations</subject><subject>Time series</subject><subject>Variability</subject><subject>Winter</subject><subject>Winter temperatures</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0cFq3DAQBmBRUuhmm1sewJBLD9l2RpLt0bEsyTZgKJT2bGR7TLXY0kbyEvbto7I5hBzS0wyjDzE_I8Q1wlcEkN8kYLVroCIi-CBWaLTeEEB9IVYAJveyrj6Jy5T2AKBA4Uo0DwP7xY2ut4sLvrB-KJxfOB4iL-dRGAsfvA9xtpNbTvm5sMsc0uEvR9cXi5u5SLnl9Fl8HO2U-OqlrsWf-7vf2x-b5ufuYfu92fRakdlYSTSirQekjjlvOfY9gZLQ6a6zWnOHGm2p7ABdVcuROoNcDwpgIB6oVGvx5fzvIYbHI6elnV3qeZqs53BMLZIsyxw4h_w_BapBU6kzvXlD9-EYfQ7SokGUqAy-r2pT65LIyKxuz6qPIaXIY3uIbrbx1CK0_27Vvr5V5vLMn9zEp3dtu_vV5GUro54BJwWTrQ</recordid><startdate>20160528</startdate><enddate>20160528</enddate><creator>Proistosescu, Cristian</creator><creator>Rhines, Andrew</creator><creator>Huybers, Peter</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160528</creationdate><title>Identification and interpretation of nonnormality in atmospheric time series</title><author>Proistosescu, Cristian ; Rhines, Andrew ; Huybers, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-a288f1a7d18bee194fcc80320b4bba44eb141a53ad0b672f8b91e7d300d8ed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annual variations</topic><topic>Atmospherics</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Determinants</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Geophysics</topic><topic>High frequencies</topic><topic>Identification</topic><topic>Kurtosis</topic><topic>Noise prediction</topic><topic>nonnormality</topic><topic>non‐Gaussianity</topic><topic>Radiosonde temperature</topic><topic>Radiosondes</topic><topic>Skewness</topic><topic>spectral analysis</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>temperature distributions</topic><topic>Temperature effects</topic><topic>Temperature variations</topic><topic>Time series</topic><topic>Variability</topic><topic>Winter</topic><topic>Winter temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proistosescu, Cristian</creatorcontrib><creatorcontrib>Rhines, Andrew</creatorcontrib><creatorcontrib>Huybers, Peter</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proistosescu, Cristian</au><au>Rhines, Andrew</au><au>Huybers, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and interpretation of nonnormality in atmospheric time series</atitle><jtitle>Geophysical research letters</jtitle><date>2016-05-28</date><risdate>2016</risdate><volume>43</volume><issue>10</issue><spage>5425</spage><epage>5434</epage><pages>5425-5434</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Nonnormal characteristics of geophysical time series are important determinants of extreme events and may provide insight into the underlying dynamics of a system. The structure of nonnormality in winter temperature is examined through the use of linear filtering of radiosonde temperature time series. Filtering either low or high frequencies generally suppresses what is otherwise statistically significant nonnormal variability in temperature. The structure of nonnormality is partly attributable to geometric relations between filtering and the appearance of skewness, kurtosis, and higher order moments in time series data, and partly attributable to the presence of nonnormal temperature variations at the highest resolved frequencies in the presence of atmospheric memory. A nonnormal autoregressive model and a multiplicative noise model are both consistent with the observed frequency structure of nonnormality. These results suggest that the generating mechanism for nonnormal variations does not necessarily act at the frequencies at which greatest nonnormality is observed. Key Points Atmospheric temperature variability is nonnormal on daily time scales Apparent normal variability on synoptic scales is an artifact of filtering Generating mechanism for nonnormality does not necessarily act at frequency where greatest nonnormality is observed</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL068880</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-05, Vol.43 (10), p.5425-5434
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1825509400
source Wiley Online Library Journals; Free E-Journal (出版社公開部分のみ); Wiley Online Library Free Content; Wiley Online Library AGU Free Content
subjects Annual variations
Atmospherics
Autoregressive models
Autoregressive processes
Determinants
Dynamical systems
Dynamics
Filtering
Filtration
Geophysics
High frequencies
Identification
Kurtosis
Noise prediction
nonnormality
non‐Gaussianity
Radiosonde temperature
Radiosondes
Skewness
spectral analysis
Statistical analysis
Temperature
temperature distributions
Temperature effects
Temperature variations
Time series
Variability
Winter
Winter temperatures
title Identification and interpretation of nonnormality in atmospheric time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20interpretation%20of%20nonnormality%20in%20atmospheric%20time%20series&rft.jtitle=Geophysical%20research%20letters&rft.au=Proistosescu,%20Cristian&rft.date=2016-05-28&rft.volume=43&rft.issue=10&rft.spage=5425&rft.epage=5434&rft.pages=5425-5434&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068880&rft_dat=%3Cproquest_cross%3E1808704854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797458892&rft_id=info:pmid/&rfr_iscdi=true