Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes

Euler deconvolution has been developed as almost the most common tool in potential field data semi-automatic interpretation. The structural index (SI) is a main determining factor of the quality of depth estimation. In this paper, we first present an improved Euler deconvolution method to eliminate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2016-06, Vol.173 (6), p.2073-2085
Hauptverfasser: Zhou, Wenna, Nan, Zeyu, Li, Jiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2085
container_issue 6
container_start_page 2073
container_title Pure and applied geophysics
container_volume 173
creator Zhou, Wenna
Nan, Zeyu
Li, Jiyan
description Euler deconvolution has been developed as almost the most common tool in potential field data semi-automatic interpretation. The structural index (SI) is a main determining factor of the quality of depth estimation. In this paper, we first present an improved Euler deconvolution method to eliminate the influence of SI using potential field data of different altitudes. The different altitudes data can be obtained by the upward continuation or can be directly obtained by the airborne measurement realization. Euler deconvolution at different altitudes of a certain range has very similar calculation equation. Therefore, the ratio of Euler equations of two different altitudes can be calculated to discard the SI. Thus, the depth and location of geologic source can be directly calculated using the improved Euler deconvolution without any prior information. Particularly, the noise influence can be decreased using the upward continuation of different altitudes. The new method is called self-constrained Euler deconvolution (SED). Subsequently, based on the SED algorithm, we deduce the full tensor gradient (FTG) calculation form of the new improved method. As we all know, using multi-components data of FTG have added advantages in data interpretation. The FTG form is composed by x -, y - and z -directional components. Due to the using more components, the FTG form can get more accurate results and more information in detail. The proposed modification method is tested using different synthetic models, and the satisfactory results are obtained. Finally, we applied the new approach to Bishop model magnetic data and real gravity data. All the results demonstrate that the new approach is utility tool to interpret the potential field and full tensor gradient data.
doi_str_mv 10.1007/s00024-016-1254-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825507269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4079728561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-c2a185873b49890c8af7a8f8f6b346218e379ff68693056fe6864953c304ab9d3</originalsourceid><addsrcrecordid>eNqFkU1LXDEUhkOp0OnYH9BdoJtuUk--bpKlzKgtCAp-bEPmTjJEYqJJbqH_3jtOF0WQrs6B87wvHB6EvlL4QQHUSQMAJgjQgVAmBVEf0IIKBsRQPnxECwDOiZCSf0KfW3sAoEpJs0D3Nz4Fsiq59epi9lt8NiVf8dqPJf8uaeqxZHzXYt7h69J97tElfB592uK16w6XgNcxBF_nEz5NPfZp69sxOgouNf_l71yiu_Oz29VPcnl18Wt1ekmcANnJyBzVUiu-EUYbGLULyumgw7DhYmBUe65MCIMeDAc5BD9vwkg-chBuY7Z8ib4fep9qeZ586_YxttGn5LIvU7NUMylBsTn_fxT0QEFKNqPf3qAPZap5fsRSZcSee6XogRpraa36YJ9qfHT1j6Vg91LsQYqdpdi9FKvmDDtk2szmna__NL8begHzk4zR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794086152</pqid></control><display><type>article</type><title>Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Wenna ; Nan, Zeyu ; Li, Jiyan</creator><creatorcontrib>Zhou, Wenna ; Nan, Zeyu ; Li, Jiyan</creatorcontrib><description>Euler deconvolution has been developed as almost the most common tool in potential field data semi-automatic interpretation. The structural index (SI) is a main determining factor of the quality of depth estimation. In this paper, we first present an improved Euler deconvolution method to eliminate the influence of SI using potential field data of different altitudes. The different altitudes data can be obtained by the upward continuation or can be directly obtained by the airborne measurement realization. Euler deconvolution at different altitudes of a certain range has very similar calculation equation. Therefore, the ratio of Euler equations of two different altitudes can be calculated to discard the SI. Thus, the depth and location of geologic source can be directly calculated using the improved Euler deconvolution without any prior information. Particularly, the noise influence can be decreased using the upward continuation of different altitudes. The new method is called self-constrained Euler deconvolution (SED). Subsequently, based on the SED algorithm, we deduce the full tensor gradient (FTG) calculation form of the new improved method. As we all know, using multi-components data of FTG have added advantages in data interpretation. The FTG form is composed by x -, y - and z -directional components. Due to the using more components, the FTG form can get more accurate results and more information in detail. The proposed modification method is tested using different synthetic models, and the satisfactory results are obtained. Finally, we applied the new approach to Bishop model magnetic data and real gravity data. All the results demonstrate that the new approach is utility tool to interpret the potential field and full tensor gradient data.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-016-1254-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Altitude ; Data interpretation ; Deconvolution ; Earth and Environmental Science ; Earth Sciences ; Eulers equations ; Geophysics ; Geophysics/Geodesy ; Gravitation ; Gravity ; Magnetic fields ; Mathematical analysis ; Mathematical models ; Potential fields ; Tensors ; Utilities</subject><ispartof>Pure and applied geophysics, 2016-06, Vol.173 (6), p.2073-2085</ispartof><rights>Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-c2a185873b49890c8af7a8f8f6b346218e379ff68693056fe6864953c304ab9d3</citedby><cites>FETCH-LOGICAL-a405t-c2a185873b49890c8af7a8f8f6b346218e379ff68693056fe6864953c304ab9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-016-1254-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-016-1254-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Wenna</creatorcontrib><creatorcontrib>Nan, Zeyu</creatorcontrib><creatorcontrib>Li, Jiyan</creatorcontrib><title>Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>Euler deconvolution has been developed as almost the most common tool in potential field data semi-automatic interpretation. The structural index (SI) is a main determining factor of the quality of depth estimation. In this paper, we first present an improved Euler deconvolution method to eliminate the influence of SI using potential field data of different altitudes. The different altitudes data can be obtained by the upward continuation or can be directly obtained by the airborne measurement realization. Euler deconvolution at different altitudes of a certain range has very similar calculation equation. Therefore, the ratio of Euler equations of two different altitudes can be calculated to discard the SI. Thus, the depth and location of geologic source can be directly calculated using the improved Euler deconvolution without any prior information. Particularly, the noise influence can be decreased using the upward continuation of different altitudes. The new method is called self-constrained Euler deconvolution (SED). Subsequently, based on the SED algorithm, we deduce the full tensor gradient (FTG) calculation form of the new improved method. As we all know, using multi-components data of FTG have added advantages in data interpretation. The FTG form is composed by x -, y - and z -directional components. Due to the using more components, the FTG form can get more accurate results and more information in detail. The proposed modification method is tested using different synthetic models, and the satisfactory results are obtained. Finally, we applied the new approach to Bishop model magnetic data and real gravity data. All the results demonstrate that the new approach is utility tool to interpret the potential field and full tensor gradient data.</description><subject>Altitude</subject><subject>Data interpretation</subject><subject>Deconvolution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eulers equations</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Potential fields</subject><subject>Tensors</subject><subject>Utilities</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LXDEUhkOp0OnYH9BdoJtuUk--bpKlzKgtCAp-bEPmTjJEYqJJbqH_3jtOF0WQrs6B87wvHB6EvlL4QQHUSQMAJgjQgVAmBVEf0IIKBsRQPnxECwDOiZCSf0KfW3sAoEpJs0D3Nz4Fsiq59epi9lt8NiVf8dqPJf8uaeqxZHzXYt7h69J97tElfB592uK16w6XgNcxBF_nEz5NPfZp69sxOgouNf_l71yiu_Oz29VPcnl18Wt1ekmcANnJyBzVUiu-EUYbGLULyumgw7DhYmBUe65MCIMeDAc5BD9vwkg-chBuY7Z8ib4fep9qeZ586_YxttGn5LIvU7NUMylBsTn_fxT0QEFKNqPf3qAPZap5fsRSZcSee6XogRpraa36YJ9qfHT1j6Vg91LsQYqdpdi9FKvmDDtk2szmna__NL8begHzk4zR</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Zhou, Wenna</creator><creator>Nan, Zeyu</creator><creator>Li, Jiyan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes</title><author>Zhou, Wenna ; Nan, Zeyu ; Li, Jiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-c2a185873b49890c8af7a8f8f6b346218e379ff68693056fe6864953c304ab9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Altitude</topic><topic>Data interpretation</topic><topic>Deconvolution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eulers equations</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Potential fields</topic><topic>Tensors</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wenna</creatorcontrib><creatorcontrib>Nan, Zeyu</creatorcontrib><creatorcontrib>Li, Jiyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wenna</au><au>Nan, Zeyu</au><au>Li, Jiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>173</volume><issue>6</issue><spage>2073</spage><epage>2085</epage><pages>2073-2085</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>Euler deconvolution has been developed as almost the most common tool in potential field data semi-automatic interpretation. The structural index (SI) is a main determining factor of the quality of depth estimation. In this paper, we first present an improved Euler deconvolution method to eliminate the influence of SI using potential field data of different altitudes. The different altitudes data can be obtained by the upward continuation or can be directly obtained by the airborne measurement realization. Euler deconvolution at different altitudes of a certain range has very similar calculation equation. Therefore, the ratio of Euler equations of two different altitudes can be calculated to discard the SI. Thus, the depth and location of geologic source can be directly calculated using the improved Euler deconvolution without any prior information. Particularly, the noise influence can be decreased using the upward continuation of different altitudes. The new method is called self-constrained Euler deconvolution (SED). Subsequently, based on the SED algorithm, we deduce the full tensor gradient (FTG) calculation form of the new improved method. As we all know, using multi-components data of FTG have added advantages in data interpretation. The FTG form is composed by x -, y - and z -directional components. Due to the using more components, the FTG form can get more accurate results and more information in detail. The proposed modification method is tested using different synthetic models, and the satisfactory results are obtained. Finally, we applied the new approach to Bishop model magnetic data and real gravity data. All the results demonstrate that the new approach is utility tool to interpret the potential field and full tensor gradient data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-016-1254-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2016-06, Vol.173 (6), p.2073-2085
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_miscellaneous_1825507269
source SpringerLink Journals - AutoHoldings
subjects Altitude
Data interpretation
Deconvolution
Earth and Environmental Science
Earth Sciences
Eulers equations
Geophysics
Geophysics/Geodesy
Gravitation
Gravity
Magnetic fields
Mathematical analysis
Mathematical models
Potential fields
Tensors
Utilities
title Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Constrained%20Euler%20Deconvolution%20Using%20Potential%20Field%20Data%20of%20Different%20Altitudes&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Zhou,%20Wenna&rft.date=2016-06-01&rft.volume=173&rft.issue=6&rft.spage=2073&rft.epage=2085&rft.pages=2073-2085&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-016-1254-7&rft_dat=%3Cproquest_cross%3E4079728561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794086152&rft_id=info:pmid/&rfr_iscdi=true