Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy

In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2016-07, Vol.27 (7), p.6630-6636
Hauptverfasser: Zhao, N., Huang, M. L., Wu, C. M. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6636
container_issue 7
container_start_page 6630
container_title Journal of materials science. Materials in electronics
container_volume 27
creator Zhao, N.
Huang, M. L.
Wu, C. M. L.
description In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10 −4 –10 −8  s −1 , when the normalized stress, σ / E , is in the range of 10 −4 –10 −3 . Based on the Dorn equation, the apparent stress exponent ( n a ), threshold stress ( σ th ), and activation energy of creep ( Q C ) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag 3 Sn and (Cu,Ni) 6 Sn 5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.
doi_str_mv 10.1007/s10854-016-4609-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825506581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825506581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6623710667da268941a536be4e6ab8c78c62e8fb7e19b964ec362f5d97f2eeec3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AjZtoksl1KcUbFEWs4C5kpmfqSDqpSUdoV76Db-iTmFIXIrg5hwPf_3P4EDqm5IwSos4TJVpwTKjEXBKD1ztoQIUqMdfseRcNiBEKc8HYPjpI6ZUQInmpB-hhAl1qPRR1BFgUFby49zbEIjTFY_f18Xkxy2PU53HXFvPeL9s6zBehg25ZeHBT3ORckYKfQiyc92F1iPYa5xMc_ewherq6nIxu8Pj--nZ0McZ1yc0SS8lKRYmUauqY1IZTJ0pZAQfpKl0rXUsGuqkUUFMZyaEuJWvE1KiGAeRriE63vYsY3npISztvUw3euw5CnyzVTAgihaYZPfmDvoY-dvk7S5URvBTSlJmiW6qOIaUIjV3Edu7iylJiN5LtVrLNku1Gsl3nDNtmUma7GcRfzf-GvgEOmYIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795435693</pqid></control><display><type>article</type><title>Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy</title><source>SpringerNature Journals</source><creator>Zhao, N. ; Huang, M. L. ; Wu, C. M. L.</creator><creatorcontrib>Zhao, N. ; Huang, M. L. ; Wu, C. M. L.</creatorcontrib><description>In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10 −4 –10 −8  s −1 , when the normalized stress, σ / E , is in the range of 10 −4 –10 −3 . Based on the Dorn equation, the apparent stress exponent ( n a ), threshold stress ( σ th ), and activation energy of creep ( Q C ) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag 3 Sn and (Cu,Ni) 6 Sn 5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-016-4609-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Creep (materials) ; Exponents ; Lead free ; Materials Science ; Mathematical analysis ; Nickel ; Optical and Electronic Materials ; Solders ; Tensile creep ; Tin ; Tin base alloys</subject><ispartof>Journal of materials science. Materials in electronics, 2016-07, Vol.27 (7), p.6630-6636</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6623710667da268941a536be4e6ab8c78c62e8fb7e19b964ec362f5d97f2eeec3</citedby><cites>FETCH-LOGICAL-c349t-6623710667da268941a536be4e6ab8c78c62e8fb7e19b964ec362f5d97f2eeec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-016-4609-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-016-4609-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, N.</creatorcontrib><creatorcontrib>Huang, M. L.</creatorcontrib><creatorcontrib>Wu, C. M. L.</creatorcontrib><title>Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10 −4 –10 −8  s −1 , when the normalized stress, σ / E , is in the range of 10 −4 –10 −3 . Based on the Dorn equation, the apparent stress exponent ( n a ), threshold stress ( σ th ), and activation energy of creep ( Q C ) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag 3 Sn and (Cu,Ni) 6 Sn 5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Creep (materials)</subject><subject>Exponents</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Solders</subject><subject>Tensile creep</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G7AjZtoksl1KcUbFEWs4C5kpmfqSDqpSUdoV76Db-iTmFIXIrg5hwPf_3P4EDqm5IwSos4TJVpwTKjEXBKD1ztoQIUqMdfseRcNiBEKc8HYPjpI6ZUQInmpB-hhAl1qPRR1BFgUFby49zbEIjTFY_f18Xkxy2PU53HXFvPeL9s6zBehg25ZeHBT3ORckYKfQiyc92F1iPYa5xMc_ewherq6nIxu8Pj--nZ0McZ1yc0SS8lKRYmUauqY1IZTJ0pZAQfpKl0rXUsGuqkUUFMZyaEuJWvE1KiGAeRriE63vYsY3npISztvUw3euw5CnyzVTAgihaYZPfmDvoY-dvk7S5URvBTSlJmiW6qOIaUIjV3Edu7iylJiN5LtVrLNku1Gsl3nDNtmUma7GcRfzf-GvgEOmYIa</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zhao, N.</creator><creator>Huang, M. L.</creator><creator>Wu, C. M. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20160701</creationdate><title>Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy</title><author>Zhao, N. ; Huang, M. L. ; Wu, C. M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6623710667da268941a536be4e6ab8c78c62e8fb7e19b964ec362f5d97f2eeec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Creep (materials)</topic><topic>Exponents</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Solders</topic><topic>Tensile creep</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, N.</creatorcontrib><creatorcontrib>Huang, M. L.</creatorcontrib><creatorcontrib>Wu, C. M. L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, N.</au><au>Huang, M. L.</au><au>Wu, C. M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>6630</spage><epage>6636</epage><pages>6630-6636</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10 −4 –10 −8  s −1 , when the normalized stress, σ / E , is in the range of 10 −4 –10 −3 . Based on the Dorn equation, the apparent stress exponent ( n a ), threshold stress ( σ th ), and activation energy of creep ( Q C ) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag 3 Sn and (Cu,Ni) 6 Sn 5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-016-4609-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2016-07, Vol.27 (7), p.6630-6636
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_1825506581
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Creep (materials)
Exponents
Lead free
Materials Science
Mathematical analysis
Nickel
Optical and Electronic Materials
Solders
Tensile creep
Tin
Tin base alloys
title Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20creep%20behavior%20of%20Sn%E2%80%93Ag%E2%80%93Cu%E2%80%93Ni%20multicomponent%20lead-free%20solder%20alloy&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhao,%20N.&rft.date=2016-07-01&rft.volume=27&rft.issue=7&rft.spage=6630&rft.epage=6636&rft.pages=6630-6636&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-016-4609-z&rft_dat=%3Cproquest_cross%3E1825506581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795435693&rft_id=info:pmid/&rfr_iscdi=true