Effect of Structure Factor on High-Temperature Ductility of Pipe Steels

Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metal science and heat treatment 2016-05, Vol.58 (1-2), p.51-57
Hauptverfasser: Kolbasnikov, N. G., Matveev, M. A., Mishnev, P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1-2
container_start_page 51
container_title Metal science and heat treatment
container_volume 58
creator Kolbasnikov, N. G.
Matveev, M. A.
Mishnev, P. A.
description Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.
doi_str_mv 10.1007/s11041-016-9964-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825504778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452685754</galeid><sourcerecordid>A452685754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-9f0a4903d7a7077d24ac5451739126ae13f3d501f95c10ff2c7b4c75277edd173</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEuXjB7BlZHE5J3acjFXpB1IlkCizZZxzcZXGxU6G_ntcwow8nOR774ZHyAODKQOQT5Ex4IwCK2ldl5zCBZkwIQta1bK4JBOAvKRQyuKa3MS4B0gWVBOyWliLps-8zd77MJh-CJgttel9yHyXrd3ui27xcMSgf1fPCXGt609n480dMWmIbbwjV1a3Ee__5i35WC628zXdvK5e5rMNNQKgp7UFzWsoGqklSNnkXBvBBZNFzfJSIyts0QhgthaGgbW5kZ_cSJFLiU2TsFvyON49Bv89YOzVwUWDbas79ENUrMqFAC5lldDpiO50i8p11vdBm_QaPDjjO7Qu_c-4yMtKSMGTwEbBBB9jQKuOwR10OCkG6lxZjZVVqqzOlRUkJx-dmNhuh0Ht_RC6lOAf6QenZ32o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825504778</pqid></control><display><type>article</type><title>Effect of Structure Factor on High-Temperature Ductility of Pipe Steels</title><source>Springer Nature - Complete Springer Journals</source><creator>Kolbasnikov, N. G. ; Matveev, M. A. ; Mishnev, P. A.</creator><creatorcontrib>Kolbasnikov, N. G. ; Matveev, M. A. ; Mishnev, P. A.</creatorcontrib><description>Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.</description><identifier>ISSN: 0026-0673</identifier><identifier>EISSN: 1573-8973</identifier><identifier>DOI: 10.1007/s11041-016-9964-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cooling ; Degassing of metals ; Ductility ; Engineering Thermodynamics ; Founding ; Grain size ; Heat and Mass Transfer ; Materials Science ; Metal products ; Metallic Materials ; Metals ; Microalloying ; Nonmetallic inclusions ; Pipe ; Preforms ; Structural steels</subject><ispartof>Metal science and heat treatment, 2016-05, Vol.58 (1-2), p.51-57</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-9f0a4903d7a7077d24ac5451739126ae13f3d501f95c10ff2c7b4c75277edd173</citedby><cites>FETCH-LOGICAL-c500t-9f0a4903d7a7077d24ac5451739126ae13f3d501f95c10ff2c7b4c75277edd173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11041-016-9964-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11041-016-9964-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kolbasnikov, N. G.</creatorcontrib><creatorcontrib>Matveev, M. A.</creatorcontrib><creatorcontrib>Mishnev, P. A.</creatorcontrib><title>Effect of Structure Factor on High-Temperature Ductility of Pipe Steels</title><title>Metal science and heat treatment</title><addtitle>Met Sci Heat Treat</addtitle><description>Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cooling</subject><subject>Degassing of metals</subject><subject>Ductility</subject><subject>Engineering Thermodynamics</subject><subject>Founding</subject><subject>Grain size</subject><subject>Heat and Mass Transfer</subject><subject>Materials Science</subject><subject>Metal products</subject><subject>Metallic Materials</subject><subject>Metals</subject><subject>Microalloying</subject><subject>Nonmetallic inclusions</subject><subject>Pipe</subject><subject>Preforms</subject><subject>Structural steels</subject><issn>0026-0673</issn><issn>1573-8973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEuXjB7BlZHE5J3acjFXpB1IlkCizZZxzcZXGxU6G_ntcwow8nOR774ZHyAODKQOQT5Ex4IwCK2ldl5zCBZkwIQta1bK4JBOAvKRQyuKa3MS4B0gWVBOyWliLps-8zd77MJh-CJgttel9yHyXrd3ui27xcMSgf1fPCXGt609n480dMWmIbbwjV1a3Ee__5i35WC628zXdvK5e5rMNNQKgp7UFzWsoGqklSNnkXBvBBZNFzfJSIyts0QhgthaGgbW5kZ_cSJFLiU2TsFvyON49Bv89YOzVwUWDbas79ENUrMqFAC5lldDpiO50i8p11vdBm_QaPDjjO7Qu_c-4yMtKSMGTwEbBBB9jQKuOwR10OCkG6lxZjZVVqqzOlRUkJx-dmNhuh0Ht_RC6lOAf6QenZ32o</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kolbasnikov, N. G.</creator><creator>Matveev, M. A.</creator><creator>Mishnev, P. A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160501</creationdate><title>Effect of Structure Factor on High-Temperature Ductility of Pipe Steels</title><author>Kolbasnikov, N. G. ; Matveev, M. A. ; Mishnev, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-9f0a4903d7a7077d24ac5451739126ae13f3d501f95c10ff2c7b4c75277edd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cooling</topic><topic>Degassing of metals</topic><topic>Ductility</topic><topic>Engineering Thermodynamics</topic><topic>Founding</topic><topic>Grain size</topic><topic>Heat and Mass Transfer</topic><topic>Materials Science</topic><topic>Metal products</topic><topic>Metallic Materials</topic><topic>Metals</topic><topic>Microalloying</topic><topic>Nonmetallic inclusions</topic><topic>Pipe</topic><topic>Preforms</topic><topic>Structural steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolbasnikov, N. G.</creatorcontrib><creatorcontrib>Matveev, M. A.</creatorcontrib><creatorcontrib>Mishnev, P. A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metal science and heat treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolbasnikov, N. G.</au><au>Matveev, M. A.</au><au>Mishnev, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Structure Factor on High-Temperature Ductility of Pipe Steels</atitle><jtitle>Metal science and heat treatment</jtitle><stitle>Met Sci Heat Treat</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>58</volume><issue>1-2</issue><spage>51</spage><epage>57</epage><pages>51-57</pages><issn>0026-0673</issn><eissn>1573-8973</eissn><abstract>Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11041-016-9964-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-0673
ispartof Metal science and heat treatment, 2016-05, Vol.58 (1-2), p.51-57
issn 0026-0673
1573-8973
language eng
recordid cdi_proquest_miscellaneous_1825504778
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cooling
Degassing of metals
Ductility
Engineering Thermodynamics
Founding
Grain size
Heat and Mass Transfer
Materials Science
Metal products
Metallic Materials
Metals
Microalloying
Nonmetallic inclusions
Pipe
Preforms
Structural steels
title Effect of Structure Factor on High-Temperature Ductility of Pipe Steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Structure%20Factor%20on%20High-Temperature%20Ductility%20of%20Pipe%20Steels&rft.jtitle=Metal%20science%20and%20heat%20treatment&rft.au=Kolbasnikov,%20N.%20G.&rft.date=2016-05-01&rft.volume=58&rft.issue=1-2&rft.spage=51&rft.epage=57&rft.pages=51-57&rft.issn=0026-0673&rft.eissn=1573-8973&rft_id=info:doi/10.1007/s11041-016-9964-0&rft_dat=%3Cgale_proqu%3EA452685754%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825504778&rft_id=info:pmid/&rft_galeid=A452685754&rfr_iscdi=true