Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping
Dynamic time warping used in speech recognition widely was migrated to fault feature extraction and diagnosis in time domain. Integration of phase compensation, slope weighted, derivative, sliding window connection, fast dynamic time planning method is applied to dynamic time warping method. And a n...
Gespeichert in:
Veröffentlicht in: | Key Engineering Materials 2016-05, Vol.693, p.1539-1544 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1544 |
---|---|
container_issue | |
container_start_page | 1539 |
container_title | Key Engineering Materials |
container_volume | 693 |
creator | Liu, Zhen Wu Li, Ya Feng Tai Yong, Wang Shang, Zhi Wu |
description | Dynamic time warping used in speech recognition widely was migrated to fault feature extraction and diagnosis in time domain. Integration of phase compensation, slope weighted, derivative, sliding window connection, fast dynamic time planning method is applied to dynamic time warping method. And a new method of time-domain signal feature extraction and fault diagnostic based on improved dynamic time warping method of mechanical and electrical equipment was proposed. Identification and localization of fault signal characteristics may be done by improving dynamic time warping method to obtain a residual signal sequences with fault characterized sidebands and selecting the statistical characteristic parameters such as peak, RMS, kurtosis spectrum to complete identification and localization of fault signal characteristics. New time-domain fault trend prediction method of mechanical and electrical equipment was established based on new statistical parameter Thikat. A new idea and target was provided for fault diagnosis of mechanical and electrical equipment. |
doi_str_mv | 10.4028/www.scientific.net/KEM.693.1539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825495107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4072943281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3559-cf98f380a496f50e9936d64ba8312bf4ae93de29e08bd4f72d17d80e948e54fb3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0eEm3hHyyxgE2CHceJvULQByBasQGxtFzHBqPEKXZC1b_HpUggVqxmRnN152oOAGcYpTnK2MV6vU6Dstp11liVOt1d3E8XacFJiinhe2CAiyJLeMnpPhgSRBihJSbsIC4QJglnWXEEhiG8IUQww3QAmkfb6GTSNtI6OJN93cGJlS-uDTbAhe5e2wq2JnbqVTqrZA2lq-C01qrzX-P0vberJkaC1zLoCt41K99-xGaycbKxCm4PwGcvV9a9HINDI-ugT77rCDzNpo_j22T-cHM3vponilDKE2U4M4QhmfPCUKQ5J0VV5EvJCM6WJpeak0pnXCO2rHJTZhUuKxZ1OdM0N0syAuc735jlvdehE40NSte1dLrtg8AsozmnGJVRevpH-tb23sV0Apc8o7yIr4qqy51K-TYEr41YedtIvxEYiS0bEdmIHzYishGRjYhsxJZNdLjaOXReutDFf_469E-PTxFKnrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792596031</pqid></control><display><type>article</type><title>Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping</title><source>Scientific.net Journals</source><creator>Liu, Zhen Wu ; Li, Ya Feng ; Tai Yong, Wang ; Shang, Zhi Wu</creator><creatorcontrib>Liu, Zhen Wu ; Li, Ya Feng ; Tai Yong, Wang ; Shang, Zhi Wu</creatorcontrib><description>Dynamic time warping used in speech recognition widely was migrated to fault feature extraction and diagnosis in time domain. Integration of phase compensation, slope weighted, derivative, sliding window connection, fast dynamic time planning method is applied to dynamic time warping method. And a new method of time-domain signal feature extraction and fault diagnostic based on improved dynamic time warping method of mechanical and electrical equipment was proposed. Identification and localization of fault signal characteristics may be done by improving dynamic time warping method to obtain a residual signal sequences with fault characterized sidebands and selecting the statistical characteristic parameters such as peak, RMS, kurtosis spectrum to complete identification and localization of fault signal characteristics. New time-domain fault trend prediction method of mechanical and electrical equipment was established based on new statistical parameter Thikat. A new idea and target was provided for fault diagnosis of mechanical and electrical equipment.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 3038357138</identifier><identifier>ISBN: 9783038357131</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.693.1539</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Dynamics ; Electric equipment ; Fault diagnosis ; Faults ; Feature extraction ; Position (location) ; Warpage ; Warping</subject><ispartof>Key Engineering Materials, 2016-05, Vol.693, p.1539-1544</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. May 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3559-cf98f380a496f50e9936d64ba8312bf4ae93de29e08bd4f72d17d80e948e54fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4283?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Zhen Wu</creatorcontrib><creatorcontrib>Li, Ya Feng</creatorcontrib><creatorcontrib>Tai Yong, Wang</creatorcontrib><creatorcontrib>Shang, Zhi Wu</creatorcontrib><title>Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping</title><title>Key Engineering Materials</title><description>Dynamic time warping used in speech recognition widely was migrated to fault feature extraction and diagnosis in time domain. Integration of phase compensation, slope weighted, derivative, sliding window connection, fast dynamic time planning method is applied to dynamic time warping method. And a new method of time-domain signal feature extraction and fault diagnostic based on improved dynamic time warping method of mechanical and electrical equipment was proposed. Identification and localization of fault signal characteristics may be done by improving dynamic time warping method to obtain a residual signal sequences with fault characterized sidebands and selecting the statistical characteristic parameters such as peak, RMS, kurtosis spectrum to complete identification and localization of fault signal characteristics. New time-domain fault trend prediction method of mechanical and electrical equipment was established based on new statistical parameter Thikat. A new idea and target was provided for fault diagnosis of mechanical and electrical equipment.</description><subject>Dynamics</subject><subject>Electric equipment</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Position (location)</subject><subject>Warpage</subject><subject>Warping</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>3038357138</isbn><isbn>9783038357131</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkctOwzAQRS0eEm3hHyyxgE2CHceJvULQByBasQGxtFzHBqPEKXZC1b_HpUggVqxmRnN152oOAGcYpTnK2MV6vU6Dstp11liVOt1d3E8XacFJiinhe2CAiyJLeMnpPhgSRBihJSbsIC4QJglnWXEEhiG8IUQww3QAmkfb6GTSNtI6OJN93cGJlS-uDTbAhe5e2wq2JnbqVTqrZA2lq-C01qrzX-P0vberJkaC1zLoCt41K99-xGaycbKxCm4PwGcvV9a9HINDI-ugT77rCDzNpo_j22T-cHM3vponilDKE2U4M4QhmfPCUKQ5J0VV5EvJCM6WJpeak0pnXCO2rHJTZhUuKxZ1OdM0N0syAuc735jlvdehE40NSte1dLrtg8AsozmnGJVRevpH-tb23sV0Apc8o7yIr4qqy51K-TYEr41YedtIvxEYiS0bEdmIHzYishGRjYhsxJZNdLjaOXReutDFf_469E-PTxFKnrU</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Liu, Zhen Wu</creator><creator>Li, Ya Feng</creator><creator>Tai Yong, Wang</creator><creator>Shang, Zhi Wu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160501</creationdate><title>Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping</title><author>Liu, Zhen Wu ; Li, Ya Feng ; Tai Yong, Wang ; Shang, Zhi Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3559-cf98f380a496f50e9936d64ba8312bf4ae93de29e08bd4f72d17d80e948e54fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamics</topic><topic>Electric equipment</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Position (location)</topic><topic>Warpage</topic><topic>Warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhen Wu</creatorcontrib><creatorcontrib>Li, Ya Feng</creatorcontrib><creatorcontrib>Tai Yong, Wang</creatorcontrib><creatorcontrib>Shang, Zhi Wu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhen Wu</au><au>Li, Ya Feng</au><au>Tai Yong, Wang</au><au>Shang, Zhi Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping</atitle><jtitle>Key Engineering Materials</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>693</volume><spage>1539</spage><epage>1544</epage><pages>1539-1544</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>3038357138</isbn><isbn>9783038357131</isbn><abstract>Dynamic time warping used in speech recognition widely was migrated to fault feature extraction and diagnosis in time domain. Integration of phase compensation, slope weighted, derivative, sliding window connection, fast dynamic time planning method is applied to dynamic time warping method. And a new method of time-domain signal feature extraction and fault diagnostic based on improved dynamic time warping method of mechanical and electrical equipment was proposed. Identification and localization of fault signal characteristics may be done by improving dynamic time warping method to obtain a residual signal sequences with fault characterized sidebands and selecting the statistical characteristic parameters such as peak, RMS, kurtosis spectrum to complete identification and localization of fault signal characteristics. New time-domain fault trend prediction method of mechanical and electrical equipment was established based on new statistical parameter Thikat. A new idea and target was provided for fault diagnosis of mechanical and electrical equipment.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.693.1539</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key Engineering Materials, 2016-05, Vol.693, p.1539-1544 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825495107 |
source | Scientific.net Journals |
subjects | Dynamics Electric equipment Fault diagnosis Faults Feature extraction Position (location) Warpage Warping |
title | Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment Based Improved Dynamic Time Wraping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Domain%20Fault%20Diagnosis%20Method%20of%20Mechanical%20and%20Electrical%20Equipment%20Based%20Improved%20Dynamic%20Time%20Wraping&rft.jtitle=Key%20Engineering%20Materials&rft.au=Liu,%20Zhen%20Wu&rft.date=2016-05-01&rft.volume=693&rft.spage=1539&rft.epage=1544&rft.pages=1539-1544&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=3038357138&rft.isbn_list=9783038357131&rft_id=info:doi/10.4028/www.scientific.net/KEM.693.1539&rft_dat=%3Cproquest_cross%3E4072943281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792596031&rft_id=info:pmid/&rfr_iscdi=true |