Tunneling Time and Weak Measurement in Strong Field Ionization

Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-06, Vol.116 (23), p.233603-233603
Hauptverfasser: Zimmermann, Tomáš, Mishra, Siddhartha, Doran, Brent R, Gordon, Daniel F, Landsman, Alexandra S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233603
container_issue 23
container_start_page 233603
container_title Physical review letters
container_volume 116
creator Zimmermann, Tomáš
Mishra, Siddhartha
Doran, Brent R
Gordon, Daniel F
Landsman, Alexandra S
description Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.
doi_str_mv 10.1103/PhysRevLett.116.233603
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825493058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825493058</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-fe0e2f7b5bec74236023d407ef63033039d663aa93b79fa0c17d02a7a1d7a6943</originalsourceid><addsrcrecordid>eNqFkEFLw0AUhBdRbK3-hZKjl9S3-5Ld7kWQYrVQUTTiMWyaF11NNjW7EeqvN2A9CwMDw8cwDGNTDjPOAS8e3nb-kb7WFMIQyJlAlIAHbMxB6VhxnhyyMQDyWAOoETvx_h0AuJDzYzYSChMuUIzZZdY7R7V1r1FmG4qMK6MXMh_RHRnfd9SQC5F10VPo2oFZWqrLaNU6-22Cbd0pO6pM7els7xP2vLzOFrfx-v5mtbhax1uukhBXBCQqVaQFbVQihqkCywQUVRIBB-lSSjRGY6F0ZWDDVQnCKMNLZaROcMLOf3u3XfvZkw95Y_2G6to4anuf87lIE42Qzv9HldZpKoGnAzrdo33RUJlvO9uYbpf_3YM_VWJoLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799556015</pqid></control><display><type>article</type><title>Tunneling Time and Weak Measurement in Strong Field Ionization</title><source>American Physical Society Journals</source><creator>Zimmermann, Tomáš ; Mishra, Siddhartha ; Doran, Brent R ; Gordon, Daniel F ; Landsman, Alexandra S</creator><creatorcontrib>Zimmermann, Tomáš ; Mishra, Siddhartha ; Doran, Brent R ; Gordon, Daniel F ; Landsman, Alexandra S</creatorcontrib><description>Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.116.233603</identifier><identifier>PMID: 27341232</identifier><language>eng</language><publisher>United States</publisher><subject>Compatibility ; Delay ; Field ionization ; Mathematical analysis ; Particle trajectories ; Trajectories ; Tunneling</subject><ispartof>Physical review letters, 2016-06, Vol.116 (23), p.233603-233603</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27341232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, Tomáš</creatorcontrib><creatorcontrib>Mishra, Siddhartha</creatorcontrib><creatorcontrib>Doran, Brent R</creatorcontrib><creatorcontrib>Gordon, Daniel F</creatorcontrib><creatorcontrib>Landsman, Alexandra S</creatorcontrib><title>Tunneling Time and Weak Measurement in Strong Field Ionization</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.</description><subject>Compatibility</subject><subject>Delay</subject><subject>Field ionization</subject><subject>Mathematical analysis</subject><subject>Particle trajectories</subject><subject>Trajectories</subject><subject>Tunneling</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AUhBdRbK3-hZKjl9S3-5Ld7kWQYrVQUTTiMWyaF11NNjW7EeqvN2A9CwMDw8cwDGNTDjPOAS8e3nb-kb7WFMIQyJlAlIAHbMxB6VhxnhyyMQDyWAOoETvx_h0AuJDzYzYSChMuUIzZZdY7R7V1r1FmG4qMK6MXMh_RHRnfd9SQC5F10VPo2oFZWqrLaNU6-22Cbd0pO6pM7els7xP2vLzOFrfx-v5mtbhax1uukhBXBCQqVaQFbVQihqkCywQUVRIBB-lSSjRGY6F0ZWDDVQnCKMNLZaROcMLOf3u3XfvZkw95Y_2G6to4anuf87lIE42Qzv9HldZpKoGnAzrdo33RUJlvO9uYbpf_3YM_VWJoLQ</recordid><startdate>20160610</startdate><enddate>20160610</enddate><creator>Zimmermann, Tomáš</creator><creator>Mishra, Siddhartha</creator><creator>Doran, Brent R</creator><creator>Gordon, Daniel F</creator><creator>Landsman, Alexandra S</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160610</creationdate><title>Tunneling Time and Weak Measurement in Strong Field Ionization</title><author>Zimmermann, Tomáš ; Mishra, Siddhartha ; Doran, Brent R ; Gordon, Daniel F ; Landsman, Alexandra S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-fe0e2f7b5bec74236023d407ef63033039d663aa93b79fa0c17d02a7a1d7a6943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compatibility</topic><topic>Delay</topic><topic>Field ionization</topic><topic>Mathematical analysis</topic><topic>Particle trajectories</topic><topic>Trajectories</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, Tomáš</creatorcontrib><creatorcontrib>Mishra, Siddhartha</creatorcontrib><creatorcontrib>Doran, Brent R</creatorcontrib><creatorcontrib>Gordon, Daniel F</creatorcontrib><creatorcontrib>Landsman, Alexandra S</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, Tomáš</au><au>Mishra, Siddhartha</au><au>Doran, Brent R</au><au>Gordon, Daniel F</au><au>Landsman, Alexandra S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling Time and Weak Measurement in Strong Field Ionization</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-06-10</date><risdate>2016</risdate><volume>116</volume><issue>23</issue><spage>233603</spage><epage>233603</epage><pages>233603-233603</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.</abstract><cop>United States</cop><pmid>27341232</pmid><doi>10.1103/PhysRevLett.116.233603</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-06, Vol.116 (23), p.233603-233603
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1825493058
source American Physical Society Journals
subjects Compatibility
Delay
Field ionization
Mathematical analysis
Particle trajectories
Trajectories
Tunneling
title Tunneling Time and Weak Measurement in Strong Field Ionization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20Time%20and%20Weak%20Measurement%20in%20Strong%20Field%20Ionization&rft.jtitle=Physical%20review%20letters&rft.au=Zimmermann,%20Tom%C3%A1%C5%A1&rft.date=2016-06-10&rft.volume=116&rft.issue=23&rft.spage=233603&rft.epage=233603&rft.pages=233603-233603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.116.233603&rft_dat=%3Cproquest_pubme%3E1825493058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799556015&rft_id=info:pmid/27341232&rfr_iscdi=true