Weighted average of inlet and outlet temperatures in borehole heat exchangers

•An improved method analyzes thermal response tests in borehole heat exchangers.•Proposed model improves estimate the local borehole thermal resistance.•Method has been verified with field data sets on borehole heat exchangers.•Model matches both short-time and long-time data in thermal response tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2016-07, Vol.174, p.118-129
Hauptverfasser: Beier, Richard A., Spitler, Jeffrey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 118
container_title Applied energy
container_volume 174
creator Beier, Richard A.
Spitler, Jeffrey D.
description •An improved method analyzes thermal response tests in borehole heat exchangers.•Proposed model improves estimate the local borehole thermal resistance.•Method has been verified with field data sets on borehole heat exchangers.•Model matches both short-time and long-time data in thermal response tests.•Proposed method calculates average fluid temperature over the depth of a borehole. Vertical borehole heat exchangers are used to couple heat pumps to the ground, which serves as a source or sink of heat. These ground source heat pump systems heat and cool buildings efficiently with low maintenance costs. Many heat transfer models use the mean of the inlet and outlet circulating fluid temperatures as an average temperature along the entire borehole length. In this paper a weighting factor for the inlet and outlet temperatures has been developed that can be combined with 1D radial models in order to account for the variations in temperature with depth. The proposed method gives more accurate results than the mean temperature approximation without requiring computationally intensive 3D models. The method has been verified with measured data from thermal response tests on boreholes with single and double U-tubes, as well pipe-in-pipe (coaxial) boreholes. On the other hand, the usual mean temperature approximation sometimes leads to significant errors and unphysical temperatures.
doi_str_mv 10.1016/j.apenergy.2016.04.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825492477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261916305384</els_id><sourcerecordid>1808639244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-f7fc620ae963b8986eb1cbc51cbb313997236d117fa7d3dd697150a0126f404d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwCyhLNgljJ7GTHajiJRWxAbG0HHuSuEqTYjsV_XtSCmvYzENz5o7mEnJJIaFA-fUqURvs0TW7hE19AlkCQhyRGS0Ei0tKi2MygxR4zDgtT8mZ9ysAYJTBjDy_o23agCZSW3SqwWioI9t3GCLVm2gYw74MuN5M0zA69NM0qgaH7dBh1KIKEX7qVvUNOn9OTmrVebz4yXPydn_3uniMly8PT4vbZayzIg9xLWrNGSgseVoVZcGxorrS-RSqlKZlKVjKDaWiVsKkxvBS0BwUUMbrDDKTzsnVQXfjho8RfZBr6zV2nepxGL2kBcuzkmVC_AOFgqcTm00oP6DaDd47rOXG2bVyO0lB7q2WK_lrtdxbLSGT8H3j5rCI089bi056bbHXaKxDHaQZ7F8SX9Dhiwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808639244</pqid></control><display><type>article</type><title>Weighted average of inlet and outlet temperatures in borehole heat exchangers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Beier, Richard A. ; Spitler, Jeffrey D.</creator><creatorcontrib>Beier, Richard A. ; Spitler, Jeffrey D.</creatorcontrib><description>•An improved method analyzes thermal response tests in borehole heat exchangers.•Proposed model improves estimate the local borehole thermal resistance.•Method has been verified with field data sets on borehole heat exchangers.•Model matches both short-time and long-time data in thermal response tests.•Proposed method calculates average fluid temperature over the depth of a borehole. Vertical borehole heat exchangers are used to couple heat pumps to the ground, which serves as a source or sink of heat. These ground source heat pump systems heat and cool buildings efficiently with low maintenance costs. Many heat transfer models use the mean of the inlet and outlet circulating fluid temperatures as an average temperature along the entire borehole length. In this paper a weighting factor for the inlet and outlet temperatures has been developed that can be combined with 1D radial models in order to account for the variations in temperature with depth. The proposed method gives more accurate results than the mean temperature approximation without requiring computationally intensive 3D models. The method has been verified with measured data from thermal response tests on boreholes with single and double U-tubes, as well pipe-in-pipe (coaxial) boreholes. On the other hand, the usual mean temperature approximation sometimes leads to significant errors and unphysical temperatures.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2016.04.077</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Borehole heat transfer ; Borehole temperature profiles ; Borehole thermal resistance ; Boreholes ; Ground heat exchanger ; Ground-source heat pump ; Grounds ; Heat exchangers ; Heat pumps ; Inlets ; Mathematical analysis ; Outlets ; Thermal response test</subject><ispartof>Applied energy, 2016-07, Vol.174, p.118-129</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-f7fc620ae963b8986eb1cbc51cbb313997236d117fa7d3dd697150a0126f404d3</citedby><cites>FETCH-LOGICAL-c485t-f7fc620ae963b8986eb1cbc51cbb313997236d117fa7d3dd697150a0126f404d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2016.04.077$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Beier, Richard A.</creatorcontrib><creatorcontrib>Spitler, Jeffrey D.</creatorcontrib><title>Weighted average of inlet and outlet temperatures in borehole heat exchangers</title><title>Applied energy</title><description>•An improved method analyzes thermal response tests in borehole heat exchangers.•Proposed model improves estimate the local borehole thermal resistance.•Method has been verified with field data sets on borehole heat exchangers.•Model matches both short-time and long-time data in thermal response tests.•Proposed method calculates average fluid temperature over the depth of a borehole. Vertical borehole heat exchangers are used to couple heat pumps to the ground, which serves as a source or sink of heat. These ground source heat pump systems heat and cool buildings efficiently with low maintenance costs. Many heat transfer models use the mean of the inlet and outlet circulating fluid temperatures as an average temperature along the entire borehole length. In this paper a weighting factor for the inlet and outlet temperatures has been developed that can be combined with 1D radial models in order to account for the variations in temperature with depth. The proposed method gives more accurate results than the mean temperature approximation without requiring computationally intensive 3D models. The method has been verified with measured data from thermal response tests on boreholes with single and double U-tubes, as well pipe-in-pipe (coaxial) boreholes. On the other hand, the usual mean temperature approximation sometimes leads to significant errors and unphysical temperatures.</description><subject>Approximation</subject><subject>Borehole heat transfer</subject><subject>Borehole temperature profiles</subject><subject>Borehole thermal resistance</subject><subject>Boreholes</subject><subject>Ground heat exchanger</subject><subject>Ground-source heat pump</subject><subject>Grounds</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Inlets</subject><subject>Mathematical analysis</subject><subject>Outlets</subject><subject>Thermal response test</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwCyhLNgljJ7GTHajiJRWxAbG0HHuSuEqTYjsV_XtSCmvYzENz5o7mEnJJIaFA-fUqURvs0TW7hE19AlkCQhyRGS0Ei0tKi2MygxR4zDgtT8mZ9ysAYJTBjDy_o23agCZSW3SqwWioI9t3GCLVm2gYw74MuN5M0zA69NM0qgaH7dBh1KIKEX7qVvUNOn9OTmrVebz4yXPydn_3uniMly8PT4vbZayzIg9xLWrNGSgseVoVZcGxorrS-RSqlKZlKVjKDaWiVsKkxvBS0BwUUMbrDDKTzsnVQXfjho8RfZBr6zV2nepxGL2kBcuzkmVC_AOFgqcTm00oP6DaDd47rOXG2bVyO0lB7q2WK_lrtdxbLSGT8H3j5rCI089bi056bbHXaKxDHaQZ7F8SX9Dhiwo</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Beier, Richard A.</creator><creator>Spitler, Jeffrey D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20160715</creationdate><title>Weighted average of inlet and outlet temperatures in borehole heat exchangers</title><author>Beier, Richard A. ; Spitler, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-f7fc620ae963b8986eb1cbc51cbb313997236d117fa7d3dd697150a0126f404d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Borehole heat transfer</topic><topic>Borehole temperature profiles</topic><topic>Borehole thermal resistance</topic><topic>Boreholes</topic><topic>Ground heat exchanger</topic><topic>Ground-source heat pump</topic><topic>Grounds</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Inlets</topic><topic>Mathematical analysis</topic><topic>Outlets</topic><topic>Thermal response test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beier, Richard A.</creatorcontrib><creatorcontrib>Spitler, Jeffrey D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beier, Richard A.</au><au>Spitler, Jeffrey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted average of inlet and outlet temperatures in borehole heat exchangers</atitle><jtitle>Applied energy</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>174</volume><spage>118</spage><epage>129</epage><pages>118-129</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>•An improved method analyzes thermal response tests in borehole heat exchangers.•Proposed model improves estimate the local borehole thermal resistance.•Method has been verified with field data sets on borehole heat exchangers.•Model matches both short-time and long-time data in thermal response tests.•Proposed method calculates average fluid temperature over the depth of a borehole. Vertical borehole heat exchangers are used to couple heat pumps to the ground, which serves as a source or sink of heat. These ground source heat pump systems heat and cool buildings efficiently with low maintenance costs. Many heat transfer models use the mean of the inlet and outlet circulating fluid temperatures as an average temperature along the entire borehole length. In this paper a weighting factor for the inlet and outlet temperatures has been developed that can be combined with 1D radial models in order to account for the variations in temperature with depth. The proposed method gives more accurate results than the mean temperature approximation without requiring computationally intensive 3D models. The method has been verified with measured data from thermal response tests on boreholes with single and double U-tubes, as well pipe-in-pipe (coaxial) boreholes. On the other hand, the usual mean temperature approximation sometimes leads to significant errors and unphysical temperatures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2016.04.077</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2016-07, Vol.174, p.118-129
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_1825492477
source Access via ScienceDirect (Elsevier)
subjects Approximation
Borehole heat transfer
Borehole temperature profiles
Borehole thermal resistance
Boreholes
Ground heat exchanger
Ground-source heat pump
Grounds
Heat exchangers
Heat pumps
Inlets
Mathematical analysis
Outlets
Thermal response test
title Weighted average of inlet and outlet temperatures in borehole heat exchangers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20average%20of%20inlet%20and%20outlet%20temperatures%20in%20borehole%20heat%20exchangers&rft.jtitle=Applied%20energy&rft.au=Beier,%20Richard%20A.&rft.date=2016-07-15&rft.volume=174&rft.spage=118&rft.epage=129&rft.pages=118-129&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2016.04.077&rft_dat=%3Cproquest_cross%3E1808639244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808639244&rft_id=info:pmid/&rft_els_id=S0306261916305384&rfr_iscdi=true