Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes

Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2016-06, Vol.10 (2), p.721-732
Hauptverfasser: Torabi, Amin Jahromi, Er, Meng Joo, Li, Xiang, Lim, Beng Siong, Peen, Gan Oon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 2
container_start_page 721
container_title IEEE systems journal
container_volume 10
creator Torabi, Amin Jahromi
Er, Meng Joo
Li, Xiang
Lim, Beng Siong
Peen, Gan Oon
description Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.
doi_str_mv 10.1109/JSYST.2015.2425793
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825492346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7107977</ieee_id><sourcerecordid>1825492346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhiMEEp9_ABZLLCwptuPE8VgVSkFUILUMTFaIz8XI2MFOBvj1JGnFwHSn0_OeTvckyTnBE0KwuH5Yva7WE4pJPqGM5lxke8kRERlPBc3Y_tjTtCQlO0yOY_zAOC976ij5mTaNNXXVGu-Q12hmu9hCMG6DltC-exWR9gE9OWscoLX3Fs28U2bkl96Z1o9w5RSaV51t0Y2pNs5HE5FxaGE27-mqAVBoaawdyOfga4gR4mlyoCsb4WxXT5KX-e16tkgfn-7uZ9PHtM44b1MCuaZvOc54ycucMWACeFHkutaaMoWh5FgTVQjAQvWjglOthRCk0Eq8qSo7Sa62e5vgvzqIrfw0sQZrKwe-i5KUNGfDm4oevfyHfvguuP46SfqfZgwzwnuKbqk6-BgDaNkE81mFb0mwHHTIUYccdMidjj50sQ0ZAPgLcIK54Dz7BTg3h6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793340417</pqid></control><display><type>article</type><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</creator><creatorcontrib>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</creatorcontrib><description>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2015.2425793</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Artificial intelligence ; Clustering ; Clustering methods ; Coarsening ; Condition monitoring ; Continuous wavelet transforms ; data mining ; destructive test ; Fault diagnosis ; Feature extraction ; flute cut separation ; fuzzy C-Means clustering ; High speed ; high speed milling ; High-speed machining ; Maintenance management ; Milling ; online monitoring ; Production planning ; prognosis ; Vibration ; Vibration Analysis ; Vibrations ; Wavelet analysis</subject><ispartof>IEEE systems journal, 2016-06, Vol.10 (2), p.721-732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</citedby><cites>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7107977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7107977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torabi, Amin Jahromi</creatorcontrib><creatorcontrib>Er, Meng Joo</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lim, Beng Siong</creatorcontrib><creatorcontrib>Peen, Gan Oon</creatorcontrib><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</description><subject>Accumulation</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Coarsening</subject><subject>Condition monitoring</subject><subject>Continuous wavelet transforms</subject><subject>data mining</subject><subject>destructive test</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>flute cut separation</subject><subject>fuzzy C-Means clustering</subject><subject>High speed</subject><subject>high speed milling</subject><subject>High-speed machining</subject><subject>Maintenance management</subject><subject>Milling</subject><subject>online monitoring</subject><subject>Production planning</subject><subject>prognosis</subject><subject>Vibration</subject><subject>Vibration Analysis</subject><subject>Vibrations</subject><subject>Wavelet analysis</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkT1PwzAQhiMEEp9_ABZLLCwptuPE8VgVSkFUILUMTFaIz8XI2MFOBvj1JGnFwHSn0_OeTvckyTnBE0KwuH5Yva7WE4pJPqGM5lxke8kRERlPBc3Y_tjTtCQlO0yOY_zAOC976ij5mTaNNXXVGu-Q12hmu9hCMG6DltC-exWR9gE9OWscoLX3Fs28U2bkl96Z1o9w5RSaV51t0Y2pNs5HE5FxaGE27-mqAVBoaawdyOfga4gR4mlyoCsb4WxXT5KX-e16tkgfn-7uZ9PHtM44b1MCuaZvOc54ycucMWACeFHkutaaMoWh5FgTVQjAQvWjglOthRCk0Eq8qSo7Sa62e5vgvzqIrfw0sQZrKwe-i5KUNGfDm4oevfyHfvguuP46SfqfZgwzwnuKbqk6-BgDaNkE81mFb0mwHHTIUYccdMidjj50sQ0ZAPgLcIK54Dz7BTg3h6g</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Torabi, Amin Jahromi</creator><creator>Er, Meng Joo</creator><creator>Li, Xiang</creator><creator>Lim, Beng Siong</creator><creator>Peen, Gan Oon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><author>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accumulation</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Coarsening</topic><topic>Condition monitoring</topic><topic>Continuous wavelet transforms</topic><topic>data mining</topic><topic>destructive test</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>flute cut separation</topic><topic>fuzzy C-Means clustering</topic><topic>High speed</topic><topic>high speed milling</topic><topic>High-speed machining</topic><topic>Maintenance management</topic><topic>Milling</topic><topic>online monitoring</topic><topic>Production planning</topic><topic>prognosis</topic><topic>Vibration</topic><topic>Vibration Analysis</topic><topic>Vibrations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torabi, Amin Jahromi</creatorcontrib><creatorcontrib>Er, Meng Joo</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lim, Beng Siong</creatorcontrib><creatorcontrib>Peen, Gan Oon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torabi, Amin Jahromi</au><au>Er, Meng Joo</au><au>Li, Xiang</au><au>Lim, Beng Siong</au><au>Peen, Gan Oon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2016-06</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>721</spage><epage>732</epage><pages>721-732</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2015.2425793</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2016-06, Vol.10 (2), p.721-732
issn 1932-8184
1937-9234
language eng
recordid cdi_proquest_miscellaneous_1825492346
source IEEE Electronic Library (IEL)
subjects Accumulation
Artificial intelligence
Clustering
Clustering methods
Coarsening
Condition monitoring
Continuous wavelet transforms
data mining
destructive test
Fault diagnosis
Feature extraction
flute cut separation
fuzzy C-Means clustering
High speed
high speed milling
High-speed machining
Maintenance management
Milling
online monitoring
Production planning
prognosis
Vibration
Vibration Analysis
Vibrations
Wavelet analysis
title Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Clustering%20Methods%20for%20Online%20Tool%20Condition%20Monitoring%20and%20Fault%20Diagnosis%20in%20High-Speed%20Milling%20Processes&rft.jtitle=IEEE%20systems%20journal&rft.au=Torabi,%20Amin%20Jahromi&rft.date=2016-06&rft.volume=10&rft.issue=2&rft.spage=721&rft.epage=732&rft.pages=721-732&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2015.2425793&rft_dat=%3Cproquest_RIE%3E1825492346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793340417&rft_id=info:pmid/&rft_ieee_id=7107977&rfr_iscdi=true