Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes
Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2016-06, Vol.10 (2), p.721-732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 2 |
container_start_page | 721 |
container_title | IEEE systems journal |
container_volume | 10 |
creator | Torabi, Amin Jahromi Er, Meng Joo Li, Xiang Lim, Beng Siong Peen, Gan Oon |
description | Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers. |
doi_str_mv | 10.1109/JSYST.2015.2425793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825492346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7107977</ieee_id><sourcerecordid>1825492346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhiMEEp9_ABZLLCwptuPE8VgVSkFUILUMTFaIz8XI2MFOBvj1JGnFwHSn0_OeTvckyTnBE0KwuH5Yva7WE4pJPqGM5lxke8kRERlPBc3Y_tjTtCQlO0yOY_zAOC976ij5mTaNNXXVGu-Q12hmu9hCMG6DltC-exWR9gE9OWscoLX3Fs28U2bkl96Z1o9w5RSaV51t0Y2pNs5HE5FxaGE27-mqAVBoaawdyOfga4gR4mlyoCsb4WxXT5KX-e16tkgfn-7uZ9PHtM44b1MCuaZvOc54ycucMWACeFHkutaaMoWh5FgTVQjAQvWjglOthRCk0Eq8qSo7Sa62e5vgvzqIrfw0sQZrKwe-i5KUNGfDm4oevfyHfvguuP46SfqfZgwzwnuKbqk6-BgDaNkE81mFb0mwHHTIUYccdMidjj50sQ0ZAPgLcIK54Dz7BTg3h6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793340417</pqid></control><display><type>article</type><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</creator><creatorcontrib>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</creatorcontrib><description>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2015.2425793</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Artificial intelligence ; Clustering ; Clustering methods ; Coarsening ; Condition monitoring ; Continuous wavelet transforms ; data mining ; destructive test ; Fault diagnosis ; Feature extraction ; flute cut separation ; fuzzy C-Means clustering ; High speed ; high speed milling ; High-speed machining ; Maintenance management ; Milling ; online monitoring ; Production planning ; prognosis ; Vibration ; Vibration Analysis ; Vibrations ; Wavelet analysis</subject><ispartof>IEEE systems journal, 2016-06, Vol.10 (2), p.721-732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</citedby><cites>FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7107977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7107977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torabi, Amin Jahromi</creatorcontrib><creatorcontrib>Er, Meng Joo</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lim, Beng Siong</creatorcontrib><creatorcontrib>Peen, Gan Oon</creatorcontrib><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</description><subject>Accumulation</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Coarsening</subject><subject>Condition monitoring</subject><subject>Continuous wavelet transforms</subject><subject>data mining</subject><subject>destructive test</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>flute cut separation</subject><subject>fuzzy C-Means clustering</subject><subject>High speed</subject><subject>high speed milling</subject><subject>High-speed machining</subject><subject>Maintenance management</subject><subject>Milling</subject><subject>online monitoring</subject><subject>Production planning</subject><subject>prognosis</subject><subject>Vibration</subject><subject>Vibration Analysis</subject><subject>Vibrations</subject><subject>Wavelet analysis</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkT1PwzAQhiMEEp9_ABZLLCwptuPE8VgVSkFUILUMTFaIz8XI2MFOBvj1JGnFwHSn0_OeTvckyTnBE0KwuH5Yva7WE4pJPqGM5lxke8kRERlPBc3Y_tjTtCQlO0yOY_zAOC976ij5mTaNNXXVGu-Q12hmu9hCMG6DltC-exWR9gE9OWscoLX3Fs28U2bkl96Z1o9w5RSaV51t0Y2pNs5HE5FxaGE27-mqAVBoaawdyOfga4gR4mlyoCsb4WxXT5KX-e16tkgfn-7uZ9PHtM44b1MCuaZvOc54ycucMWACeFHkutaaMoWh5FgTVQjAQvWjglOthRCk0Eq8qSo7Sa62e5vgvzqIrfw0sQZrKwe-i5KUNGfDm4oevfyHfvguuP46SfqfZgwzwnuKbqk6-BgDaNkE81mFb0mwHHTIUYccdMidjj50sQ0ZAPgLcIK54Dz7BTg3h6g</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Torabi, Amin Jahromi</creator><creator>Er, Meng Joo</creator><creator>Li, Xiang</creator><creator>Lim, Beng Siong</creator><creator>Peen, Gan Oon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</title><author>Torabi, Amin Jahromi ; Er, Meng Joo ; Li, Xiang ; Lim, Beng Siong ; Peen, Gan Oon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1e5f2b5037878544e49e7665fcff24d0e870f1d69e09dff2672ff99916fd9bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accumulation</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Coarsening</topic><topic>Condition monitoring</topic><topic>Continuous wavelet transforms</topic><topic>data mining</topic><topic>destructive test</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>flute cut separation</topic><topic>fuzzy C-Means clustering</topic><topic>High speed</topic><topic>high speed milling</topic><topic>High-speed machining</topic><topic>Maintenance management</topic><topic>Milling</topic><topic>online monitoring</topic><topic>Production planning</topic><topic>prognosis</topic><topic>Vibration</topic><topic>Vibration Analysis</topic><topic>Vibrations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torabi, Amin Jahromi</creatorcontrib><creatorcontrib>Er, Meng Joo</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lim, Beng Siong</creatorcontrib><creatorcontrib>Peen, Gan Oon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torabi, Amin Jahromi</au><au>Er, Meng Joo</au><au>Li, Xiang</au><au>Lim, Beng Siong</au><au>Peen, Gan Oon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2016-06</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>721</spage><epage>732</epage><pages>721-732</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Tool condition monitoring (TCM) is a necessary action in a high-speed milling (HSM) process. As a worn milling tool might irreversibly damage a workpiece, there is a vital demand for a TCM system to evaluate the tool wear progress, or equivalently the resultant surface roughness, nonintrusively. To build up a condition monitoring system for HSM processes, sensor signals are to be utilized to form a reference model that reflects the performance of the system. Therefore, a desired reference model has to apply more efficient feature extraction and artificial intelligence techniques to be more repeatable and generalizable. This paper illustrates the performance of clustering techniques on high-speed end milling experimental data. Studied clustering methods are applied to the wavelet features of force and vibration signals to illustrate the repeatability of their results. It is shown that clustering methods can coarsely capture the status of the process and can be applied for fault diagnosis and TCM purposes. It is also discussed how the application of clustering methods may improve the performance of existing reference models toward the more efficient utilization of available experimental data and to develop easily generalizable reference models. Finally, a possible application of clustering results is discussed comparing with state-of-the-art papers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2015.2425793</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2016-06, Vol.10 (2), p.721-732 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825492346 |
source | IEEE Electronic Library (IEL) |
subjects | Accumulation Artificial intelligence Clustering Clustering methods Coarsening Condition monitoring Continuous wavelet transforms data mining destructive test Fault diagnosis Feature extraction flute cut separation fuzzy C-Means clustering High speed high speed milling High-speed machining Maintenance management Milling online monitoring Production planning prognosis Vibration Vibration Analysis Vibrations Wavelet analysis |
title | Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Clustering%20Methods%20for%20Online%20Tool%20Condition%20Monitoring%20and%20Fault%20Diagnosis%20in%20High-Speed%20Milling%20Processes&rft.jtitle=IEEE%20systems%20journal&rft.au=Torabi,%20Amin%20Jahromi&rft.date=2016-06&rft.volume=10&rft.issue=2&rft.spage=721&rft.epage=732&rft.pages=721-732&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2015.2425793&rft_dat=%3Cproquest_RIE%3E1825492346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793340417&rft_id=info:pmid/&rft_ieee_id=7107977&rfr_iscdi=true |