3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland
From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull v...
Gespeichert in:
Veröffentlicht in: | Journal of volcanology and geothermal research 2016-05, Vol.317, p.42-52 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | Journal of volcanology and geothermal research |
container_volume | 317 |
creator | Obermann, Anne Lupi, Matteo Mordret, Aurélien Jakobsdóttir, Steinunn S. Miller, Stephen A. |
description | From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir. |
doi_str_mv | 10.1016/j.jvolgeores.2016.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825489639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377027316000573</els_id><sourcerecordid>1825489639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-da5ba8b0b7b6239ac0def3db0aac6d8f09203d9a984a86b39f09307610667f473</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EEuXnDl6yIGEcB9tZ8k-lCiR-1pbjTEpCGhc7LeqFOAIX6MUwKhJLWI309Oa9mY8QyiBlwMRJm7ZL103ReQxpFpUUshQY3yIjpmSWCCjkNhkBlzKBTPJdshdCCwAMFIzIHb9MzKxssB9o75qA9MGsOmymL_TdLJEObuam3sxfVtTV9LFff9TYdaFdf74uuo7Gamt6d0zHFjvTVwdkpzZdwMOfuU-er6-eLm6Tyf3N-OJskliu8iGpzGlpVAmlLEXGC2OhwppXJRhjRaVqKDLgVWEKlRslSl5EhYMUDISQdS75Pjna5M69e1tgGPSsCfGEeAO6RdBMZae5KgQv_mEFJRiPBdGqNlbrXQgeaz33zcz4lWagv2nrVv_S1t-0NWQ60o6r55tVjF8vG_Q62AjVYtV4tIOuXPN3yBfdto82</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808613093</pqid></control><display><type>article</type><title>3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland</title><source>Access via ScienceDirect (Elsevier)</source><creator>Obermann, Anne ; Lupi, Matteo ; Mordret, Aurélien ; Jakobsdóttir, Steinunn S. ; Miller, Stephen A.</creator><creatorcontrib>Obermann, Anne ; Lupi, Matteo ; Mordret, Aurélien ; Jakobsdóttir, Steinunn S. ; Miller, Stephen A.</creatorcontrib><description>From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.</description><identifier>ISSN: 0377-0273</identifier><identifier>EISSN: 1872-6097</identifier><identifier>DOI: 10.1016/j.jvolgeores.2016.02.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ambient seismic noise ; Anomalies ; Dispersion (wave) ; Iceland ; Noise ; Rayleigh waves ; Reservoirs ; Seismic waves ; Shallow magma reservoir, sheet swarm ; Volcanic activity ; Volcano tomography ; Volcanoes</subject><ispartof>Journal of volcanology and geothermal research, 2016-05, Vol.317, p.42-52</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-da5ba8b0b7b6239ac0def3db0aac6d8f09203d9a984a86b39f09307610667f473</citedby><cites>FETCH-LOGICAL-c384t-da5ba8b0b7b6239ac0def3db0aac6d8f09203d9a984a86b39f09307610667f473</cites><orcidid>0000-0002-7998-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jvolgeores.2016.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Obermann, Anne</creatorcontrib><creatorcontrib>Lupi, Matteo</creatorcontrib><creatorcontrib>Mordret, Aurélien</creatorcontrib><creatorcontrib>Jakobsdóttir, Steinunn S.</creatorcontrib><creatorcontrib>Miller, Stephen A.</creatorcontrib><title>3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland</title><title>Journal of volcanology and geothermal research</title><description>From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.</description><subject>Ambient seismic noise</subject><subject>Anomalies</subject><subject>Dispersion (wave)</subject><subject>Iceland</subject><subject>Noise</subject><subject>Rayleigh waves</subject><subject>Reservoirs</subject><subject>Seismic waves</subject><subject>Shallow magma reservoir, sheet swarm</subject><subject>Volcanic activity</subject><subject>Volcano tomography</subject><subject>Volcanoes</subject><issn>0377-0273</issn><issn>1872-6097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhS0EEuXnDl6yIGEcB9tZ8k-lCiR-1pbjTEpCGhc7LeqFOAIX6MUwKhJLWI309Oa9mY8QyiBlwMRJm7ZL103ReQxpFpUUshQY3yIjpmSWCCjkNhkBlzKBTPJdshdCCwAMFIzIHb9MzKxssB9o75qA9MGsOmymL_TdLJEObuam3sxfVtTV9LFff9TYdaFdf74uuo7Gamt6d0zHFjvTVwdkpzZdwMOfuU-er6-eLm6Tyf3N-OJskliu8iGpzGlpVAmlLEXGC2OhwppXJRhjRaVqKDLgVWEKlRslSl5EhYMUDISQdS75Pjna5M69e1tgGPSsCfGEeAO6RdBMZae5KgQv_mEFJRiPBdGqNlbrXQgeaz33zcz4lWagv2nrVv_S1t-0NWQ60o6r55tVjF8vG_Q62AjVYtV4tIOuXPN3yBfdto82</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Obermann, Anne</creator><creator>Lupi, Matteo</creator><creator>Mordret, Aurélien</creator><creator>Jakobsdóttir, Steinunn S.</creator><creator>Miller, Stephen A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid></search><sort><creationdate>20160501</creationdate><title>3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland</title><author>Obermann, Anne ; Lupi, Matteo ; Mordret, Aurélien ; Jakobsdóttir, Steinunn S. ; Miller, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-da5ba8b0b7b6239ac0def3db0aac6d8f09203d9a984a86b39f09307610667f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ambient seismic noise</topic><topic>Anomalies</topic><topic>Dispersion (wave)</topic><topic>Iceland</topic><topic>Noise</topic><topic>Rayleigh waves</topic><topic>Reservoirs</topic><topic>Seismic waves</topic><topic>Shallow magma reservoir, sheet swarm</topic><topic>Volcanic activity</topic><topic>Volcano tomography</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obermann, Anne</creatorcontrib><creatorcontrib>Lupi, Matteo</creatorcontrib><creatorcontrib>Mordret, Aurélien</creatorcontrib><creatorcontrib>Jakobsdóttir, Steinunn S.</creatorcontrib><creatorcontrib>Miller, Stephen A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of volcanology and geothermal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obermann, Anne</au><au>Lupi, Matteo</au><au>Mordret, Aurélien</au><au>Jakobsdóttir, Steinunn S.</au><au>Miller, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland</atitle><jtitle>Journal of volcanology and geothermal research</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>317</volume><spage>42</spage><epage>52</epage><pages>42-52</pages><issn>0377-0273</issn><eissn>1872-6097</eissn><abstract>From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jvolgeores.2016.02.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0273 |
ispartof | Journal of volcanology and geothermal research, 2016-05, Vol.317, p.42-52 |
issn | 0377-0273 1872-6097 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825489639 |
source | Access via ScienceDirect (Elsevier) |
subjects | Ambient seismic noise Anomalies Dispersion (wave) Iceland Noise Rayleigh waves Reservoirs Seismic waves Shallow magma reservoir, sheet swarm Volcanic activity Volcano tomography Volcanoes |
title | 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-ambient%20noise%20Rayleigh%20wave%20tomography%20of%20Sn%C3%A6fellsj%C3%B6kull%20volcano,%20Iceland&rft.jtitle=Journal%20of%20volcanology%20and%20geothermal%20research&rft.au=Obermann,%20Anne&rft.date=2016-05-01&rft.volume=317&rft.spage=42&rft.epage=52&rft.pages=42-52&rft.issn=0377-0273&rft.eissn=1872-6097&rft_id=info:doi/10.1016/j.jvolgeores.2016.02.013&rft_dat=%3Cproquest_cross%3E1825489639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808613093&rft_id=info:pmid/&rft_els_id=S0377027316000573&rfr_iscdi=true |