Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K

In this study, we report on a novel approach for real-time temperature probing using magnetization of magnetic nanoparticles as thermometric property. Differently from the existing approaches, we included diameter distribution function, f(D), and temperature dependence of saturation magnetization, M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2015-10, Vol.234, p.263-268
Hauptverfasser: Pi, Shiqiang, Liu, Wenzhong, Zhong, Jing, Xiang, Qing, Morais, Paulo Cesar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue
container_start_page 263
container_title Sensors and actuators. A. Physical.
container_volume 234
creator Pi, Shiqiang
Liu, Wenzhong
Zhong, Jing
Xiang, Qing
Morais, Paulo Cesar
description In this study, we report on a novel approach for real-time temperature probing using magnetization of magnetic nanoparticles as thermometric property. Differently from the existing approaches, we included diameter distribution function, f(D), and temperature dependence of saturation magnetization, M sub(S)(T), in the model picture herein used to assess temperature. Using simulation as well as experimental data, we found the new approach provides accuracy better than 0.05 K in 1 s measurement. Magnetization data were acquired using low-frequency (25 Hz) and weak triangular-wave applied AC magnetic field (amplitude below 50 Oe), allowing for the use of the first two terms of the Taylor's expansion of the Langevin function. Experimental conditions reported in the present study are promising for developing new instrumentation to support the upcoming magnetonanothermometry technology and its application in the medical field.
doi_str_mv 10.1016/j.sna.2015.09.017
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825487375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825487375</sourcerecordid><originalsourceid>FETCH-LOGICAL-p188t-cd6f950cf6cfe1450163c4124038e0e9f5d6a68f72d634611a95c5a256f7c0563</originalsourceid><addsrcrecordid>eNotj7tOAzEUBV2ARAh8AJ1Lml2u37slinhERKIJdTDea5JobQfbqyh_TySojqaYkQ4hdwxaBkw_7NsSbcuBqRb6Fpi5IDPouWwkl-aKXJeyBwAhjJmRz3U62jwUmtGOTd0FpDYOZwqpIg32O2JN0cZUt5hDCljziR53dUsrhgNmW6d8VpybsnUn-oW1YqZ1ayOFFhR9uyGX3o4Fb_93Tj6en9aL12b1_rJcPK6aA-u62rhB-16B89p5ZFKdfwgnGZcgOgTsvRq01Z03fNBCasZsr5yyXGlvHCgt5uT-r3vI6WfCUjdhVxyOo42YprJhHVeyM8Io8QtjzFef</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825487375</pqid></control><display><type>article</type><title>Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K</title><source>Elsevier ScienceDirect Journals</source><creator>Pi, Shiqiang ; Liu, Wenzhong ; Zhong, Jing ; Xiang, Qing ; Morais, Paulo Cesar</creator><creatorcontrib>Pi, Shiqiang ; Liu, Wenzhong ; Zhong, Jing ; Xiang, Qing ; Morais, Paulo Cesar</creatorcontrib><description>In this study, we report on a novel approach for real-time temperature probing using magnetization of magnetic nanoparticles as thermometric property. Differently from the existing approaches, we included diameter distribution function, f(D), and temperature dependence of saturation magnetization, M sub(S)(T), in the model picture herein used to assess temperature. Using simulation as well as experimental data, we found the new approach provides accuracy better than 0.05 K in 1 s measurement. Magnetization data were acquired using low-frequency (25 Hz) and weak triangular-wave applied AC magnetic field (amplitude below 50 Oe), allowing for the use of the first two terms of the Taylor's expansion of the Langevin function. Experimental conditions reported in the present study are promising for developing new instrumentation to support the upcoming magnetonanothermometry technology and its application in the medical field.</description><identifier>ISSN: 0924-4247</identifier><identifier>DOI: 10.1016/j.sna.2015.09.017</identifier><language>eng</language><subject>Accuracy ; Actuators ; Instrumentation ; Magnetic fields ; Magnetization ; Nanoparticles ; Real time ; Saturation (magnetic)</subject><ispartof>Sensors and actuators. A. Physical., 2015-10, Vol.234, p.263-268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pi, Shiqiang</creatorcontrib><creatorcontrib>Liu, Wenzhong</creatorcontrib><creatorcontrib>Zhong, Jing</creatorcontrib><creatorcontrib>Xiang, Qing</creatorcontrib><creatorcontrib>Morais, Paulo Cesar</creatorcontrib><title>Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K</title><title>Sensors and actuators. A. Physical.</title><description>In this study, we report on a novel approach for real-time temperature probing using magnetization of magnetic nanoparticles as thermometric property. Differently from the existing approaches, we included diameter distribution function, f(D), and temperature dependence of saturation magnetization, M sub(S)(T), in the model picture herein used to assess temperature. Using simulation as well as experimental data, we found the new approach provides accuracy better than 0.05 K in 1 s measurement. Magnetization data were acquired using low-frequency (25 Hz) and weak triangular-wave applied AC magnetic field (amplitude below 50 Oe), allowing for the use of the first two terms of the Taylor's expansion of the Langevin function. Experimental conditions reported in the present study are promising for developing new instrumentation to support the upcoming magnetonanothermometry technology and its application in the medical field.</description><subject>Accuracy</subject><subject>Actuators</subject><subject>Instrumentation</subject><subject>Magnetic fields</subject><subject>Magnetization</subject><subject>Nanoparticles</subject><subject>Real time</subject><subject>Saturation (magnetic)</subject><issn>0924-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotj7tOAzEUBV2ARAh8AJ1Lml2u37slinhERKIJdTDea5JobQfbqyh_TySojqaYkQ4hdwxaBkw_7NsSbcuBqRb6Fpi5IDPouWwkl-aKXJeyBwAhjJmRz3U62jwUmtGOTd0FpDYOZwqpIg32O2JN0cZUt5hDCljziR53dUsrhgNmW6d8VpybsnUn-oW1YqZ1ayOFFhR9uyGX3o4Fb_93Tj6en9aL12b1_rJcPK6aA-u62rhB-16B89p5ZFKdfwgnGZcgOgTsvRq01Z03fNBCasZsr5yyXGlvHCgt5uT-r3vI6WfCUjdhVxyOo42YprJhHVeyM8Io8QtjzFef</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Pi, Shiqiang</creator><creator>Liu, Wenzhong</creator><creator>Zhong, Jing</creator><creator>Xiang, Qing</creator><creator>Morais, Paulo Cesar</creator><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K</title><author>Pi, Shiqiang ; Liu, Wenzhong ; Zhong, Jing ; Xiang, Qing ; Morais, Paulo Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p188t-cd6f950cf6cfe1450163c4124038e0e9f5d6a68f72d634611a95c5a256f7c0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Actuators</topic><topic>Instrumentation</topic><topic>Magnetic fields</topic><topic>Magnetization</topic><topic>Nanoparticles</topic><topic>Real time</topic><topic>Saturation (magnetic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pi, Shiqiang</creatorcontrib><creatorcontrib>Liu, Wenzhong</creatorcontrib><creatorcontrib>Zhong, Jing</creatorcontrib><creatorcontrib>Xiang, Qing</creatorcontrib><creatorcontrib>Morais, Paulo Cesar</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pi, Shiqiang</au><au>Liu, Wenzhong</au><au>Zhong, Jing</au><au>Xiang, Qing</au><au>Morais, Paulo Cesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>234</volume><spage>263</spage><epage>268</epage><pages>263-268</pages><issn>0924-4247</issn><abstract>In this study, we report on a novel approach for real-time temperature probing using magnetization of magnetic nanoparticles as thermometric property. Differently from the existing approaches, we included diameter distribution function, f(D), and temperature dependence of saturation magnetization, M sub(S)(T), in the model picture herein used to assess temperature. Using simulation as well as experimental data, we found the new approach provides accuracy better than 0.05 K in 1 s measurement. Magnetization data were acquired using low-frequency (25 Hz) and weak triangular-wave applied AC magnetic field (amplitude below 50 Oe), allowing for the use of the first two terms of the Taylor's expansion of the Langevin function. Experimental conditions reported in the present study are promising for developing new instrumentation to support the upcoming magnetonanothermometry technology and its application in the medical field.</abstract><doi>10.1016/j.sna.2015.09.017</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2015-10, Vol.234, p.263-268
issn 0924-4247
language eng
recordid cdi_proquest_miscellaneous_1825487375
source Elsevier ScienceDirect Journals
subjects Accuracy
Actuators
Instrumentation
Magnetic fields
Magnetization
Nanoparticles
Real time
Saturation (magnetic)
title Towards real-time and remote magnetonanothermometry with temperature accuracy better than 0.05 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20real-time%20and%20remote%20magnetonanothermometry%20with%20temperature%20accuracy%20better%20than%200.05%20K&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Pi,%20Shiqiang&rft.date=2015-10-01&rft.volume=234&rft.spage=263&rft.epage=268&rft.pages=263-268&rft.issn=0924-4247&rft_id=info:doi/10.1016/j.sna.2015.09.017&rft_dat=%3Cproquest%3E1825487375%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825487375&rft_id=info:pmid/&rfr_iscdi=true