A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images
A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adj...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2016 |
creator | Tong, Gang Wang, Guan-jun Wu, Zhi-yong Yun, Hai-jiao Yang, Hua |
description | A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adjusts dynamic range of images for luminance component V of H S V color space. Secondly, membership function is established in stages to adjust local contrast of image details nonlinearly based on fuzzy set theory. Finally, the enhanced images are transformed from H S V color space into R G B color space. The experiments further show that the proposed method has the shortest processing time, the highest AIC values, and the least NIQE values among the other four conventional methods. It has excellent effect, which can enhance the global brightness and local contrast, and advance visibility of low illumination images. |
doi_str_mv | 10.1155/2016/8598917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825486595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4078681141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d6198854a2fbe1f18ec084c9a8b722147f9a701bb8b0b23a8d06516352fd5c2f3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCs7pzbMEvAhal5c0bXocY9PB0IMTvJW0TbaONtGkdWyf3owOBC-e3nvw4_HePwiuAT8CMDYiGOIRZylPITkJBsBiGjKIklPfYxKFQOjHeXDh3AZjAgz4IBBj9GK-ZY2mei10IRupWzSuV8ZW7bpBE9PklZYl2voRzZtP63GJZt1-v0NvskXLtTR2h5SxaGG2aF7XXVNp0VZGey5W0l0GZ0rUTl4d6zB4n02Xk-dw8fo0n4wXYUFT2oZlDCnnLBJE5RIUcFlgHhWp4HlCiH9CpSLBkOc8xzmhgpc4ZhBTRlTJCqLoMLjr9_obvzrp2qypXCHrWmhpOpcBJyziMUuZp7d_6MZ0VvvrMkhSylnCE-7VQ68Ka5yzUmWftmqE3WWAs0Pe2SHv7Ji35_c9X1e6FNvqP33Ta-mNVOJXA5AkAvoDr4GIlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793857878</pqid></control><display><type>article</type><title>A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tong, Gang ; Wang, Guan-jun ; Wu, Zhi-yong ; Yun, Hai-jiao ; Yang, Hua</creator><contributor>Memmolo, Pasquale</contributor><creatorcontrib>Tong, Gang ; Wang, Guan-jun ; Wu, Zhi-yong ; Yun, Hai-jiao ; Yang, Hua ; Memmolo, Pasquale</creatorcontrib><description>A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adjusts dynamic range of images for luminance component V of H S V color space. Secondly, membership function is established in stages to adjust local contrast of image details nonlinearly based on fuzzy set theory. Finally, the enhanced images are transformed from H S V color space into R G B color space. The experiments further show that the proposed method has the shortest processing time, the highest AIC values, and the least NIQE values among the other four conventional methods. It has excellent effect, which can enhance the global brightness and local contrast, and advance visibility of low illumination images.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/8598917</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adjustment ; Algorithms ; Brightness ; Color ; Color imagery ; Fuzzy set theory ; Fuzzy sets ; Illumination ; Image contrast ; Image enhancement ; Mathematical models ; Methods ; Quality ; Science ; Set theory</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Hai-jiao Yun et al.</rights><rights>Copyright © 2016 Hai-jiao Yun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d6198854a2fbe1f18ec084c9a8b722147f9a701bb8b0b23a8d06516352fd5c2f3</citedby><cites>FETCH-LOGICAL-c393t-d6198854a2fbe1f18ec084c9a8b722147f9a701bb8b0b23a8d06516352fd5c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Memmolo, Pasquale</contributor><creatorcontrib>Tong, Gang</creatorcontrib><creatorcontrib>Wang, Guan-jun</creatorcontrib><creatorcontrib>Wu, Zhi-yong</creatorcontrib><creatorcontrib>Yun, Hai-jiao</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><title>A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images</title><title>Mathematical problems in engineering</title><description>A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adjusts dynamic range of images for luminance component V of H S V color space. Secondly, membership function is established in stages to adjust local contrast of image details nonlinearly based on fuzzy set theory. Finally, the enhanced images are transformed from H S V color space into R G B color space. The experiments further show that the proposed method has the shortest processing time, the highest AIC values, and the least NIQE values among the other four conventional methods. It has excellent effect, which can enhance the global brightness and local contrast, and advance visibility of low illumination images.</description><subject>Adjustment</subject><subject>Algorithms</subject><subject>Brightness</subject><subject>Color</subject><subject>Color imagery</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Illumination</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Quality</subject><subject>Science</subject><subject>Set theory</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0EFLwzAUB_AiCs7pzbMEvAhal5c0bXocY9PB0IMTvJW0TbaONtGkdWyf3owOBC-e3nvw4_HePwiuAT8CMDYiGOIRZylPITkJBsBiGjKIklPfYxKFQOjHeXDh3AZjAgz4IBBj9GK-ZY2mei10IRupWzSuV8ZW7bpBE9PklZYl2voRzZtP63GJZt1-v0NvskXLtTR2h5SxaGG2aF7XXVNp0VZGey5W0l0GZ0rUTl4d6zB4n02Xk-dw8fo0n4wXYUFT2oZlDCnnLBJE5RIUcFlgHhWp4HlCiH9CpSLBkOc8xzmhgpc4ZhBTRlTJCqLoMLjr9_obvzrp2qypXCHrWmhpOpcBJyziMUuZp7d_6MZ0VvvrMkhSylnCE-7VQ68Ka5yzUmWftmqE3WWAs0Pe2SHv7Ji35_c9X1e6FNvqP33Ta-mNVOJXA5AkAvoDr4GIlw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Tong, Gang</creator><creator>Wang, Guan-jun</creator><creator>Wu, Zhi-yong</creator><creator>Yun, Hai-jiao</creator><creator>Yang, Hua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images</title><author>Tong, Gang ; Wang, Guan-jun ; Wu, Zhi-yong ; Yun, Hai-jiao ; Yang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d6198854a2fbe1f18ec084c9a8b722147f9a701bb8b0b23a8d06516352fd5c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjustment</topic><topic>Algorithms</topic><topic>Brightness</topic><topic>Color</topic><topic>Color imagery</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Illumination</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Quality</topic><topic>Science</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Gang</creatorcontrib><creatorcontrib>Wang, Guan-jun</creatorcontrib><creatorcontrib>Wu, Zhi-yong</creatorcontrib><creatorcontrib>Yun, Hai-jiao</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Gang</au><au>Wang, Guan-jun</au><au>Wu, Zhi-yong</au><au>Yun, Hai-jiao</au><au>Yang, Hua</au><au>Memmolo, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adjusts dynamic range of images for luminance component V of H S V color space. Secondly, membership function is established in stages to adjust local contrast of image details nonlinearly based on fuzzy set theory. Finally, the enhanced images are transformed from H S V color space into R G B color space. The experiments further show that the proposed method has the shortest processing time, the highest AIC values, and the least NIQE values among the other four conventional methods. It has excellent effect, which can enhance the global brightness and local contrast, and advance visibility of low illumination images.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/8598917</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825486595 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adjustment Algorithms Brightness Color Color imagery Fuzzy set theory Fuzzy sets Illumination Image contrast Image enhancement Mathematical models Methods Quality Science Set theory |
title | A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Enhancement%20Algorithm%20Combined%20with%20Improved%20Fuzzy%20Set%20Theory%20for%20Low%20Illumination%20Images&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tong,%20Gang&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/8598917&rft_dat=%3Cproquest_cross%3E4078681141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793857878&rft_id=info:pmid/&rfr_iscdi=true |