Optimization of an “area to point” heat conduction problem
•An approach is developed to optimize ATP problem based on flow pattern construction.•The heat conduction is optimized using entropy generation minimization principle.•Exergy analysis is carried out to evaluate the optimized heat conduction process.•The conductive path consisting of high conductivit...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2016-01, Vol.93, p.61-71 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | Applied thermal engineering |
container_volume | 93 |
creator | Guo, Kai Qi, Wenzhe Liu, Botan Liu, Chunjiang Huang, Zheqing Zhu, Guangming |
description | •An approach is developed to optimize ATP problem based on flow pattern construction.•The heat conduction is optimized using entropy generation minimization principle.•Exergy analysis is carried out to evaluate the optimized heat conduction process.•The conductive path consisting of high conductivity material is constructed.
An optimization approach is developed to optimize the “area to point” heat conduction problem based on the concept of flow pattern construction. As the key point of the approach, an optimal temperature field for heat conduction process is necessary to be constructed firstly (also known as the flow pattern construction). To construct the optimal temperature field, the heat conduction is optimized using the entropy generation minimization principle in a thermodynamics point of view. After optimization, the average and maximum temperature of the heating surface decreases, and, simultaneously, the exergy efficiency increases as well. Then the second step of the present optimization approach is to design a conductive path consisting of high conductivity materials to enhance heat transfer, according to the optimal temperature field. With the conductive path, the average and maximum temperature of the heating domain is found to decrease. |
doi_str_mv | 10.1016/j.applthermaleng.2015.09.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825486003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431115009825</els_id><sourcerecordid>1825486003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a0ce7dad4fd5c9455db1b52d31ef5acc9770b802fa90ff8d8e081815a5e449c43</originalsourceid><addsrcrecordid>eNqNkLFOwzAURT2ARCn8QwYGlgQ7sRNHQkioooBUqQvMlmM_U1dJHGwXCaZ-CPxcv4SUsrAxveXce_UOQhcEZwST8mqdyWFo4wp8J1voX7IcE5bhOsMlOUITUrA6pQUhJ-g0hDXGJOcVnaCb5RBtZz9ktK5PnElkn-y2n9KDTKJLBmf7uNt-JSuQMVGu1xv1Qw7eNS10Z-jYyDbA-e-douf53dPsIV0s7x9nt4tUFWURU4kVVFpqajRTNWVMN6RhuS4IGCaVqqsKNxznRtbYGK45YE44YZIBpbWixRRdHnrH3dcNhCg6GxS0rezBbYIgPGeUlxgXI3p9QJV3IXgwYvC2k_5dECz2qsRa_FUl9qoErsWoaozPD3EY33mz4EVQFnoF2npQUWhn_1f0Dd3hf8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825486003</pqid></control><display><type>article</type><title>Optimization of an “area to point” heat conduction problem</title><source>Access via ScienceDirect (Elsevier)</source><creator>Guo, Kai ; Qi, Wenzhe ; Liu, Botan ; Liu, Chunjiang ; Huang, Zheqing ; Zhu, Guangming</creator><creatorcontrib>Guo, Kai ; Qi, Wenzhe ; Liu, Botan ; Liu, Chunjiang ; Huang, Zheqing ; Zhu, Guangming</creatorcontrib><description>•An approach is developed to optimize ATP problem based on flow pattern construction.•The heat conduction is optimized using entropy generation minimization principle.•Exergy analysis is carried out to evaluate the optimized heat conduction process.•The conductive path consisting of high conductivity material is constructed.
An optimization approach is developed to optimize the “area to point” heat conduction problem based on the concept of flow pattern construction. As the key point of the approach, an optimal temperature field for heat conduction process is necessary to be constructed firstly (also known as the flow pattern construction). To construct the optimal temperature field, the heat conduction is optimized using the entropy generation minimization principle in a thermodynamics point of view. After optimization, the average and maximum temperature of the heating surface decreases, and, simultaneously, the exergy efficiency increases as well. Then the second step of the present optimization approach is to design a conductive path consisting of high conductivity materials to enhance heat transfer, according to the optimal temperature field. With the conductive path, the average and maximum temperature of the heating domain is found to decrease.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2015.09.061</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Conduction ; Conductive path construction ; Construction ; Design optimization ; Entropy generation minimization ; Heat conduction ; Heat transfer ; Heating ; Optimization ; Optimization by variational calculus ; Temperature distribution ; “Area to point” heat conduction</subject><ispartof>Applied thermal engineering, 2016-01, Vol.93, p.61-71</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a0ce7dad4fd5c9455db1b52d31ef5acc9770b802fa90ff8d8e081815a5e449c43</citedby><cites>FETCH-LOGICAL-c363t-a0ce7dad4fd5c9455db1b52d31ef5acc9770b802fa90ff8d8e081815a5e449c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2015.09.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Qi, Wenzhe</creatorcontrib><creatorcontrib>Liu, Botan</creatorcontrib><creatorcontrib>Liu, Chunjiang</creatorcontrib><creatorcontrib>Huang, Zheqing</creatorcontrib><creatorcontrib>Zhu, Guangming</creatorcontrib><title>Optimization of an “area to point” heat conduction problem</title><title>Applied thermal engineering</title><description>•An approach is developed to optimize ATP problem based on flow pattern construction.•The heat conduction is optimized using entropy generation minimization principle.•Exergy analysis is carried out to evaluate the optimized heat conduction process.•The conductive path consisting of high conductivity material is constructed.
An optimization approach is developed to optimize the “area to point” heat conduction problem based on the concept of flow pattern construction. As the key point of the approach, an optimal temperature field for heat conduction process is necessary to be constructed firstly (also known as the flow pattern construction). To construct the optimal temperature field, the heat conduction is optimized using the entropy generation minimization principle in a thermodynamics point of view. After optimization, the average and maximum temperature of the heating surface decreases, and, simultaneously, the exergy efficiency increases as well. Then the second step of the present optimization approach is to design a conductive path consisting of high conductivity materials to enhance heat transfer, according to the optimal temperature field. With the conductive path, the average and maximum temperature of the heating domain is found to decrease.</description><subject>Conduction</subject><subject>Conductive path construction</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Entropy generation minimization</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Optimization</subject><subject>Optimization by variational calculus</subject><subject>Temperature distribution</subject><subject>“Area to point” heat conduction</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURT2ARCn8QwYGlgQ7sRNHQkioooBUqQvMlmM_U1dJHGwXCaZ-CPxcv4SUsrAxveXce_UOQhcEZwST8mqdyWFo4wp8J1voX7IcE5bhOsMlOUITUrA6pQUhJ-g0hDXGJOcVnaCb5RBtZz9ktK5PnElkn-y2n9KDTKJLBmf7uNt-JSuQMVGu1xv1Qw7eNS10Z-jYyDbA-e-douf53dPsIV0s7x9nt4tUFWURU4kVVFpqajRTNWVMN6RhuS4IGCaVqqsKNxznRtbYGK45YE44YZIBpbWixRRdHnrH3dcNhCg6GxS0rezBbYIgPGeUlxgXI3p9QJV3IXgwYvC2k_5dECz2qsRa_FUl9qoErsWoaozPD3EY33mz4EVQFnoF2npQUWhn_1f0Dd3hf8E</recordid><startdate>20160125</startdate><enddate>20160125</enddate><creator>Guo, Kai</creator><creator>Qi, Wenzhe</creator><creator>Liu, Botan</creator><creator>Liu, Chunjiang</creator><creator>Huang, Zheqing</creator><creator>Zhu, Guangming</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160125</creationdate><title>Optimization of an “area to point” heat conduction problem</title><author>Guo, Kai ; Qi, Wenzhe ; Liu, Botan ; Liu, Chunjiang ; Huang, Zheqing ; Zhu, Guangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a0ce7dad4fd5c9455db1b52d31ef5acc9770b802fa90ff8d8e081815a5e449c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conduction</topic><topic>Conductive path construction</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Entropy generation minimization</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Optimization</topic><topic>Optimization by variational calculus</topic><topic>Temperature distribution</topic><topic>“Area to point” heat conduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Qi, Wenzhe</creatorcontrib><creatorcontrib>Liu, Botan</creatorcontrib><creatorcontrib>Liu, Chunjiang</creatorcontrib><creatorcontrib>Huang, Zheqing</creatorcontrib><creatorcontrib>Zhu, Guangming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Kai</au><au>Qi, Wenzhe</au><au>Liu, Botan</au><au>Liu, Chunjiang</au><au>Huang, Zheqing</au><au>Zhu, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an “area to point” heat conduction problem</atitle><jtitle>Applied thermal engineering</jtitle><date>2016-01-25</date><risdate>2016</risdate><volume>93</volume><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>1359-4311</issn><abstract>•An approach is developed to optimize ATP problem based on flow pattern construction.•The heat conduction is optimized using entropy generation minimization principle.•Exergy analysis is carried out to evaluate the optimized heat conduction process.•The conductive path consisting of high conductivity material is constructed.
An optimization approach is developed to optimize the “area to point” heat conduction problem based on the concept of flow pattern construction. As the key point of the approach, an optimal temperature field for heat conduction process is necessary to be constructed firstly (also known as the flow pattern construction). To construct the optimal temperature field, the heat conduction is optimized using the entropy generation minimization principle in a thermodynamics point of view. After optimization, the average and maximum temperature of the heating surface decreases, and, simultaneously, the exergy efficiency increases as well. Then the second step of the present optimization approach is to design a conductive path consisting of high conductivity materials to enhance heat transfer, according to the optimal temperature field. With the conductive path, the average and maximum temperature of the heating domain is found to decrease.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2015.09.061</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2016-01, Vol.93, p.61-71 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825486003 |
source | Access via ScienceDirect (Elsevier) |
subjects | Conduction Conductive path construction Construction Design optimization Entropy generation minimization Heat conduction Heat transfer Heating Optimization Optimization by variational calculus Temperature distribution “Area to point” heat conduction |
title | Optimization of an “area to point” heat conduction problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20%E2%80%9Carea%20to%20point%E2%80%9D%20heat%20conduction%20problem&rft.jtitle=Applied%20thermal%20engineering&rft.au=Guo,%20Kai&rft.date=2016-01-25&rft.volume=93&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2015.09.061&rft_dat=%3Cproquest_cross%3E1825486003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825486003&rft_id=info:pmid/&rft_els_id=S1359431115009825&rfr_iscdi=true |