Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)

Rechargeable batteries play a pivotal role in conversion of chemical energy to electrical energy and energy storage. Lithium batteries have been considered as promising power supply for various electric vehicles and grid storage systems. However, the formation of lithium dendrites and use of liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2016-05, Vol.288, p.253-256
Hauptverfasser: Rao, RPrasada, Yuen, J M, Adams, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue
container_start_page 253
container_title Solid state ionics
container_volume 288
creator Rao, RPrasada
Yuen, J M
Adams, S
description Rechargeable batteries play a pivotal role in conversion of chemical energy to electrical energy and energy storage. Lithium batteries have been considered as promising power supply for various electric vehicles and grid storage systems. However, the formation of lithium dendrites and use of liquid electrolytes turned out to be the major impediment in realising the potential of these batteries. To overcome these challenges here we demonstrate the use of various fast-ion conducting solids as solid electrolytes in semi-flow Li-S batteries containing catholyte slurries. Lithium conducting Li sub(7)P sub(3)S sub(11) was prepared using ball- milling followed by annealing at 250 degree C. Rietveld refinements of compounds indicated that the product is Li sub(7)P sub(3)S sub(11) with space group P-1 and lattice parameters of a = 12.42(2) Aa, b = 6.066(9) Aa, c = 12.52(8) Aa. The Li sub(7)P sub(3)S sub(11) produced exhibits an ionic conductivity of the order of 7.1 10 super(- 4) S/cm at 30 degree C. Here, we investigate the stability of these solid electrolytes in contact with catholytes consisting of polysulfide, Li sub(2)S sub(8), dissolved in monoglyme. Li sub(2)S sub(8)/Li sub(7)P sub(3)S sub(11)/Li semi-flow rechargeable battery exhibited an initial discharge specific capacity of 1268 mAh/g at 1 C rate and retained 748 mAh/g after the 10th cycle.
doi_str_mv 10.1016/j.ssi.2016.01.015
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825485024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825485024</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18254850243</originalsourceid><addsrcrecordid>eNqVyrsOgjAYBeAOmoiXB3DrCAPYcu1uvAwORt1JIT9QUkD5aYxvLyG-gMlJvnOSQ8iWM48zHu9qD1F5_lg9xsdEM2KNI3H9JBALskSsGWNxIGKLnG6QV7IvQWYaqFZDpUxDERrlFrp700wOA_QfalC1Jb0oiiazE-c6GTj3Sc6dNZkXUiNsfq6IfTw89mf32XcvAzikjcIctJYtdAZTLvwoFBHzw-CP6xcZCELL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825485024</pqid></control><display><type>article</type><title>Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)</title><source>Elsevier ScienceDirect Journals</source><creator>Rao, RPrasada ; Yuen, J M ; Adams, S</creator><creatorcontrib>Rao, RPrasada ; Yuen, J M ; Adams, S</creatorcontrib><description>Rechargeable batteries play a pivotal role in conversion of chemical energy to electrical energy and energy storage. Lithium batteries have been considered as promising power supply for various electric vehicles and grid storage systems. However, the formation of lithium dendrites and use of liquid electrolytes turned out to be the major impediment in realising the potential of these batteries. To overcome these challenges here we demonstrate the use of various fast-ion conducting solids as solid electrolytes in semi-flow Li-S batteries containing catholyte slurries. Lithium conducting Li sub(7)P sub(3)S sub(11) was prepared using ball- milling followed by annealing at 250 degree C. Rietveld refinements of compounds indicated that the product is Li sub(7)P sub(3)S sub(11) with space group P-1 and lattice parameters of a = 12.42(2) Aa, b = 6.066(9) Aa, c = 12.52(8) Aa. The Li sub(7)P sub(3)S sub(11) produced exhibits an ionic conductivity of the order of 7.1 10 super(- 4) S/cm at 30 degree C. Here, we investigate the stability of these solid electrolytes in contact with catholytes consisting of polysulfide, Li sub(2)S sub(8), dissolved in monoglyme. Li sub(2)S sub(8)/Li sub(7)P sub(3)S sub(11)/Li semi-flow rechargeable battery exhibited an initial discharge specific capacity of 1268 mAh/g at 1 C rate and retained 748 mAh/g after the 10th cycle.</description><identifier>ISSN: 0167-2738</identifier><identifier>DOI: 10.1016/j.ssi.2016.01.015</identifier><language>eng</language><subject>Catholytes ; Conduction ; Dendritic structure ; Electric batteries ; Energy storage ; Lithium ; Rechargeable batteries ; Solid electrolytes</subject><ispartof>Solid state ionics, 2016-05, Vol.288, p.253-256</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rao, RPrasada</creatorcontrib><creatorcontrib>Yuen, J M</creatorcontrib><creatorcontrib>Adams, S</creatorcontrib><title>Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)</title><title>Solid state ionics</title><description>Rechargeable batteries play a pivotal role in conversion of chemical energy to electrical energy and energy storage. Lithium batteries have been considered as promising power supply for various electric vehicles and grid storage systems. However, the formation of lithium dendrites and use of liquid electrolytes turned out to be the major impediment in realising the potential of these batteries. To overcome these challenges here we demonstrate the use of various fast-ion conducting solids as solid electrolytes in semi-flow Li-S batteries containing catholyte slurries. Lithium conducting Li sub(7)P sub(3)S sub(11) was prepared using ball- milling followed by annealing at 250 degree C. Rietveld refinements of compounds indicated that the product is Li sub(7)P sub(3)S sub(11) with space group P-1 and lattice parameters of a = 12.42(2) Aa, b = 6.066(9) Aa, c = 12.52(8) Aa. The Li sub(7)P sub(3)S sub(11) produced exhibits an ionic conductivity of the order of 7.1 10 super(- 4) S/cm at 30 degree C. Here, we investigate the stability of these solid electrolytes in contact with catholytes consisting of polysulfide, Li sub(2)S sub(8), dissolved in monoglyme. Li sub(2)S sub(8)/Li sub(7)P sub(3)S sub(11)/Li semi-flow rechargeable battery exhibited an initial discharge specific capacity of 1268 mAh/g at 1 C rate and retained 748 mAh/g after the 10th cycle.</description><subject>Catholytes</subject><subject>Conduction</subject><subject>Dendritic structure</subject><subject>Electric batteries</subject><subject>Energy storage</subject><subject>Lithium</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><issn>0167-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVyrsOgjAYBeAOmoiXB3DrCAPYcu1uvAwORt1JIT9QUkD5aYxvLyG-gMlJvnOSQ8iWM48zHu9qD1F5_lg9xsdEM2KNI3H9JBALskSsGWNxIGKLnG6QV7IvQWYaqFZDpUxDERrlFrp700wOA_QfalC1Jb0oiiazE-c6GTj3Sc6dNZkXUiNsfq6IfTw89mf32XcvAzikjcIctJYtdAZTLvwoFBHzw-CP6xcZCELL</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Rao, RPrasada</creator><creator>Yuen, J M</creator><creator>Adams, S</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)</title><author>Rao, RPrasada ; Yuen, J M ; Adams, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18254850243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catholytes</topic><topic>Conduction</topic><topic>Dendritic structure</topic><topic>Electric batteries</topic><topic>Energy storage</topic><topic>Lithium</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, RPrasada</creatorcontrib><creatorcontrib>Yuen, J M</creatorcontrib><creatorcontrib>Adams, S</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, RPrasada</au><au>Yuen, J M</au><au>Adams, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)</atitle><jtitle>Solid state ionics</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>288</volume><spage>253</spage><epage>256</epage><pages>253-256</pages><issn>0167-2738</issn><abstract>Rechargeable batteries play a pivotal role in conversion of chemical energy to electrical energy and energy storage. Lithium batteries have been considered as promising power supply for various electric vehicles and grid storage systems. However, the formation of lithium dendrites and use of liquid electrolytes turned out to be the major impediment in realising the potential of these batteries. To overcome these challenges here we demonstrate the use of various fast-ion conducting solids as solid electrolytes in semi-flow Li-S batteries containing catholyte slurries. Lithium conducting Li sub(7)P sub(3)S sub(11) was prepared using ball- milling followed by annealing at 250 degree C. Rietveld refinements of compounds indicated that the product is Li sub(7)P sub(3)S sub(11) with space group P-1 and lattice parameters of a = 12.42(2) Aa, b = 6.066(9) Aa, c = 12.52(8) Aa. The Li sub(7)P sub(3)S sub(11) produced exhibits an ionic conductivity of the order of 7.1 10 super(- 4) S/cm at 30 degree C. Here, we investigate the stability of these solid electrolytes in contact with catholytes consisting of polysulfide, Li sub(2)S sub(8), dissolved in monoglyme. Li sub(2)S sub(8)/Li sub(7)P sub(3)S sub(11)/Li semi-flow rechargeable battery exhibited an initial discharge specific capacity of 1268 mAh/g at 1 C rate and retained 748 mAh/g after the 10th cycle.</abstract><doi>10.1016/j.ssi.2016.01.015</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2016-05, Vol.288, p.253-256
issn 0167-2738
language eng
recordid cdi_proquest_miscellaneous_1825485024
source Elsevier ScienceDirect Journals
subjects Catholytes
Conduction
Dendritic structure
Electric batteries
Energy storage
Lithium
Rechargeable batteries
Solid electrolytes
title Rechargeable lithium semi-flow battery using Li sub(7)P sub(3)S sub(11)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rechargeable%20lithium%20semi-flow%20battery%20using%20Li%20sub(7)P%20sub(3)S%20sub(11)&rft.jtitle=Solid%20state%20ionics&rft.au=Rao,%20RPrasada&rft.date=2016-05-01&rft.volume=288&rft.spage=253&rft.epage=256&rft.pages=253-256&rft.issn=0167-2738&rft_id=info:doi/10.1016/j.ssi.2016.01.015&rft_dat=%3Cproquest%3E1825485024%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825485024&rft_id=info:pmid/&rfr_iscdi=true