Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature

Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting the formulation of the bond strength–coordination number fluctuation (BSCNF) model dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2015-11, Vol.281, p.43-48
Hauptverfasser: Okada, Yohei, Ikeda, Masahiro, Aniya, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 43
container_title Solid state ionics
container_volume 281
creator Okada, Yohei
Ikeda, Masahiro
Aniya, Masaru
description Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting the formulation of the bond strength–coordination number fluctuation (BSCNF) model developed originally to describe the transport properties of supercooled liquids. According to the present model, the origin of the non-Arrhenius ionic conductivity as described by the VFT equation traces back to the bonding energy fluctuations of the diffusing ions within the solid. The model suggests that good ionic conductors exhibit a non-Arrhenius behavior in the ionic conductivity. The present study reveals also that the degree of the non-Arrhenius behavior of different materials is separated roughly into two groups depending on the nature of the chemical bonds. One of these groups consists mainly of compounds such as Ag ion conductors, and the other group contains materials such as Li ion conductors. •A model for the non-Arrhenius ionic conductivity (NAIC) is proposed.•The NAIC is caused by the fluctuations of bonding energy and coordination number.•The NAIC is related with the bonding nature of the compounds.•The model predicts that good ionic conductors exhibit a NAIC behavior.
doi_str_mv 10.1016/j.ssi.2015.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825484424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273815003288</els_id><sourcerecordid>1825484424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-cd3857c01b3303ffabc259d0f3edf8f23cdb1a167376c3ed667312503fc0375f3</originalsourceid><addsrcrecordid>eNp9kMtOIzEQRa0RIxEy8wHsvGTTjR_pbmdYRYiXFMGGWVuOXT2pyLHBdoPy9-MorFmVyzr3SnUIueSs5Yz317s2Z2wF413LVMsE-0FmXA2iGXq1PCOzygyNGKQ6Jxc57xhjvVT9jJTnGJpVSlsIOGWKMaClNgY32YIfWA4UA83Ro6PgwZYU_aFA_kNXtGwhJihojaf76MBTExzFkmkCb0qtop9YtkeObmojhn80mDIl-EV-jsZn-P015-Tv_d3r7WOzfnl4ul2tGyslK411UnWDZXxTVzmOZmNFt3RslOBGNQpp3Yabepgcelv_-vrioquoZXLoRjknV6fetxTfJ8hF7zFb8N4EiFPWXIluoRYLsagoP6E2xZwTjPot4d6kg-ZMHw3rna6G9dGwZkpXwzVzc8pAveEDIelsEYIFh6mq0i7iN-n_Q-iGCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825484424</pqid></control><display><type>article</type><title>Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature</title><source>Elsevier ScienceDirect Journals</source><creator>Okada, Yohei ; Ikeda, Masahiro ; Aniya, Masaru</creator><creatorcontrib>Okada, Yohei ; Ikeda, Masahiro ; Aniya, Masaru</creatorcontrib><description>Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting the formulation of the bond strength–coordination number fluctuation (BSCNF) model developed originally to describe the transport properties of supercooled liquids. According to the present model, the origin of the non-Arrhenius ionic conductivity as described by the VFT equation traces back to the bonding energy fluctuations of the diffusing ions within the solid. The model suggests that good ionic conductors exhibit a non-Arrhenius behavior in the ionic conductivity. The present study reveals also that the degree of the non-Arrhenius behavior of different materials is separated roughly into two groups depending on the nature of the chemical bonds. One of these groups consists mainly of compounds such as Ag ion conductors, and the other group contains materials such as Li ion conductors. •A model for the non-Arrhenius ionic conductivity (NAIC) is proposed.•The NAIC is caused by the fluctuations of bonding energy and coordination number.•The NAIC is related with the bonding nature of the compounds.•The model predicts that good ionic conductors exhibit a NAIC behavior.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2015.08.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bond strength–coordination number fluctuation model ; Bonding ; Bonding characterization of materials ; Conductors ; Fluctuation ; Ionic conductivity ; Liquids ; Mathematical models ; Non-Arrhenius ionic conductivity ; Origins ; Solid electrolytes</subject><ispartof>Solid state ionics, 2015-11, Vol.281, p.43-48</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-cd3857c01b3303ffabc259d0f3edf8f23cdb1a167376c3ed667312503fc0375f3</citedby><cites>FETCH-LOGICAL-c330t-cd3857c01b3303ffabc259d0f3edf8f23cdb1a167376c3ed667312503fc0375f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273815003288$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Okada, Yohei</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Aniya, Masaru</creatorcontrib><title>Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature</title><title>Solid state ionics</title><description>Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting the formulation of the bond strength–coordination number fluctuation (BSCNF) model developed originally to describe the transport properties of supercooled liquids. According to the present model, the origin of the non-Arrhenius ionic conductivity as described by the VFT equation traces back to the bonding energy fluctuations of the diffusing ions within the solid. The model suggests that good ionic conductors exhibit a non-Arrhenius behavior in the ionic conductivity. The present study reveals also that the degree of the non-Arrhenius behavior of different materials is separated roughly into two groups depending on the nature of the chemical bonds. One of these groups consists mainly of compounds such as Ag ion conductors, and the other group contains materials such as Li ion conductors. •A model for the non-Arrhenius ionic conductivity (NAIC) is proposed.•The NAIC is caused by the fluctuations of bonding energy and coordination number.•The NAIC is related with the bonding nature of the compounds.•The model predicts that good ionic conductors exhibit a NAIC behavior.</description><subject>Bond strength–coordination number fluctuation model</subject><subject>Bonding</subject><subject>Bonding characterization of materials</subject><subject>Conductors</subject><subject>Fluctuation</subject><subject>Ionic conductivity</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Non-Arrhenius ionic conductivity</subject><subject>Origins</subject><subject>Solid electrolytes</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOIzEQRa0RIxEy8wHsvGTTjR_pbmdYRYiXFMGGWVuOXT2pyLHBdoPy9-MorFmVyzr3SnUIueSs5Yz317s2Z2wF413LVMsE-0FmXA2iGXq1PCOzygyNGKQ6Jxc57xhjvVT9jJTnGJpVSlsIOGWKMaClNgY32YIfWA4UA83Ro6PgwZYU_aFA_kNXtGwhJihojaf76MBTExzFkmkCb0qtop9YtkeObmojhn80mDIl-EV-jsZn-P015-Tv_d3r7WOzfnl4ul2tGyslK411UnWDZXxTVzmOZmNFt3RslOBGNQpp3Yabepgcelv_-vrioquoZXLoRjknV6fetxTfJ8hF7zFb8N4EiFPWXIluoRYLsagoP6E2xZwTjPot4d6kg-ZMHw3rna6G9dGwZkpXwzVzc8pAveEDIelsEYIFh6mq0i7iN-n_Q-iGCg</recordid><startdate>20151115</startdate><enddate>20151115</enddate><creator>Okada, Yohei</creator><creator>Ikeda, Masahiro</creator><creator>Aniya, Masaru</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151115</creationdate><title>Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature</title><author>Okada, Yohei ; Ikeda, Masahiro ; Aniya, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-cd3857c01b3303ffabc259d0f3edf8f23cdb1a167376c3ed667312503fc0375f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bond strength–coordination number fluctuation model</topic><topic>Bonding</topic><topic>Bonding characterization of materials</topic><topic>Conductors</topic><topic>Fluctuation</topic><topic>Ionic conductivity</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Non-Arrhenius ionic conductivity</topic><topic>Origins</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Yohei</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Aniya, Masaru</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Yohei</au><au>Ikeda, Masahiro</au><au>Aniya, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature</atitle><jtitle>Solid state ionics</jtitle><date>2015-11-15</date><risdate>2015</risdate><volume>281</volume><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting the formulation of the bond strength–coordination number fluctuation (BSCNF) model developed originally to describe the transport properties of supercooled liquids. According to the present model, the origin of the non-Arrhenius ionic conductivity as described by the VFT equation traces back to the bonding energy fluctuations of the diffusing ions within the solid. The model suggests that good ionic conductors exhibit a non-Arrhenius behavior in the ionic conductivity. The present study reveals also that the degree of the non-Arrhenius behavior of different materials is separated roughly into two groups depending on the nature of the chemical bonds. One of these groups consists mainly of compounds such as Ag ion conductors, and the other group contains materials such as Li ion conductors. •A model for the non-Arrhenius ionic conductivity (NAIC) is proposed.•The NAIC is caused by the fluctuations of bonding energy and coordination number.•The NAIC is related with the bonding nature of the compounds.•The model predicts that good ionic conductors exhibit a NAIC behavior.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2015.08.020</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2015-11, Vol.281, p.43-48
issn 0167-2738
1872-7689
language eng
recordid cdi_proquest_miscellaneous_1825484424
source Elsevier ScienceDirect Journals
subjects Bond strength–coordination number fluctuation model
Bonding
Bonding characterization of materials
Conductors
Fluctuation
Ionic conductivity
Liquids
Mathematical models
Non-Arrhenius ionic conductivity
Origins
Solid electrolytes
title Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Arrhenius%20ionic%20conductivity%20in%20solid%20electrolytes:%20A%20theoretical%20model%20and%20its%20relation%20with%20the%20bonding%20nature&rft.jtitle=Solid%20state%20ionics&rft.au=Okada,%20Yohei&rft.date=2015-11-15&rft.volume=281&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2015.08.020&rft_dat=%3Cproquest_cross%3E1825484424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825484424&rft_id=info:pmid/&rft_els_id=S0167273815003288&rfr_iscdi=true