Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities
[Display omitted] •The fabricated photocatalysts have high number density of plasmonic hot spots.•The hot spot effect between plasmonic particles is depicted by 3D FDTD simulation.•The electromagnetic fields are strengthened by plasmonic hot spots.•The enhancement of photoactivity due to plasmonic h...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2016-02, Vol.181, p.612-624 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | |
container_start_page | 612 |
container_title | Applied catalysis. B, Environmental |
container_volume | 181 |
creator | Yang, Tung-Han Harn, Yeu-Wei Pan, Ming-Yang Huang, Li-De Chen, Miao-Chun Li, Ben-Yuan Liu, Pei-Hsuan Chen, Po-Yen Lin, Chun-Cheng Wei, Pei-Kuen Chen, Lih-Juann Wu, Jenn-Ming |
description | [Display omitted]
•The fabricated photocatalysts have high number density of plasmonic hot spots.•The hot spot effect between plasmonic particles is depicted by 3D FDTD simulation.•The electromagnetic fields are strengthened by plasmonic hot spots.•The enhancement of photoactivity due to plasmonic hot spot effect is confirmed.•We realize how interparticle gap will induce the strong plasmonic hot spot effect.
Plasmonic hot spots located among closely dispersed plasmonic nanoparticles (NPs) are intensively studied for efficient conversion of solar to chemical or electrical energy applications. Here, a successful method to synthesize high-density unaggregated plasmonic Ag or Au NPs (AgNPs or AuNPs) onto nanostructured semiconductors with 3D densely organized NPs is demonstrated. The densely dispersed plasmonic AgNPs or AuNPs are assembled chemically on the entire surface of the ZnO nanorods through bifunctional thioctic acid bridging linkers. The fabricated NPs possessing small interparticle gaps generate numerous plasmonic hot spots which boost catalytic activities of the photocatalysts. As depicted by exact 3D finite-difference time domain simulations, the electromagnetic fields are magnified exponentially among interparticle gaps, hot spots, due to the plasmonic coupling effects of the neighboring AgNPs. The electromagnetic fields are strengthened by decreasing the interparticle spacing of coupled AgNPs. It is consistent with the result that the photocatalytic reaction rate increases non-linearly with the Ag content under full-spectrum light irradiation. Using the spectral characterizations and electromagnetic field simulations, we unambiguously confirm the enhancement of photoactivity due to coupling of plasmonic hot spot effect to nanostructured semiconductors. Moreover, diverse heterostructures based on the plasmonic NPs on various ZnO nanostructures (films, nanorod arrays, branched nanowires, and mesoporous structures) or functional materials (CuInGaSe2 absorber films, multiferroic BiFeO3 films, visible-light photoactive Cu2S and CdS nanorods) are successfully fabricated using the present synthesis methodology. |
doi_str_mv | 10.1016/j.apcatb.2015.08.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825482373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337315300874</els_id><sourcerecordid>1808682516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a85b14ca866b1be91e4483ef948918ae63a4006677ac4361bdc091e1e45569493</originalsourceid><addsrcrecordid>eNqN0btqwzAUBmBRWmh6eYMOGrvYlSxZkZdCCb1BoEszC1k-jhVsy5GUlLx9FVI6lk5avv9wdH6E7ijJKaHiYZPryehY5wWhZU5kTig_QzMq5yxjUrJzNCNVITLG5uwSXYWwIYQUrJAztF310evOrjvcwBhsPOCp12FwozW4cxGHycWAv2zs8O6XQg8mejfo9QgxwdZC3-DWeWyHybs9NHhKYZeW0v3hKLSJdm-jhXCDLlrdB7j9ea_R6uX5c_GWLT9e3xdPy8zwsoyZlmVNudFSiJrWUFHgXDJoKy4rKjUIpjkhQszn2nAmaN0YklBiZSkqXrFrdH-amxba7iBENdhgoO_1CG4XFJVFyWWRTvIPSqRInIpE-Yka70Lw0KrJ20H7g6JEHctQG3UqQx3LUESqVEaKPZ5ikH68t-BVMBZGA4316ZSqcfbvAd_x25au</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808682516</pqid></control><display><type>article</type><title>Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Tung-Han ; Harn, Yeu-Wei ; Pan, Ming-Yang ; Huang, Li-De ; Chen, Miao-Chun ; Li, Ben-Yuan ; Liu, Pei-Hsuan ; Chen, Po-Yen ; Lin, Chun-Cheng ; Wei, Pei-Kuen ; Chen, Lih-Juann ; Wu, Jenn-Ming</creator><creatorcontrib>Yang, Tung-Han ; Harn, Yeu-Wei ; Pan, Ming-Yang ; Huang, Li-De ; Chen, Miao-Chun ; Li, Ben-Yuan ; Liu, Pei-Hsuan ; Chen, Po-Yen ; Lin, Chun-Cheng ; Wei, Pei-Kuen ; Chen, Lih-Juann ; Wu, Jenn-Ming</creatorcontrib><description>[Display omitted]
•The fabricated photocatalysts have high number density of plasmonic hot spots.•The hot spot effect between plasmonic particles is depicted by 3D FDTD simulation.•The electromagnetic fields are strengthened by plasmonic hot spots.•The enhancement of photoactivity due to plasmonic hot spot effect is confirmed.•We realize how interparticle gap will induce the strong plasmonic hot spot effect.
Plasmonic hot spots located among closely dispersed plasmonic nanoparticles (NPs) are intensively studied for efficient conversion of solar to chemical or electrical energy applications. Here, a successful method to synthesize high-density unaggregated plasmonic Ag or Au NPs (AgNPs or AuNPs) onto nanostructured semiconductors with 3D densely organized NPs is demonstrated. The densely dispersed plasmonic AgNPs or AuNPs are assembled chemically on the entire surface of the ZnO nanorods through bifunctional thioctic acid bridging linkers. The fabricated NPs possessing small interparticle gaps generate numerous plasmonic hot spots which boost catalytic activities of the photocatalysts. As depicted by exact 3D finite-difference time domain simulations, the electromagnetic fields are magnified exponentially among interparticle gaps, hot spots, due to the plasmonic coupling effects of the neighboring AgNPs. The electromagnetic fields are strengthened by decreasing the interparticle spacing of coupled AgNPs. It is consistent with the result that the photocatalytic reaction rate increases non-linearly with the Ag content under full-spectrum light irradiation. Using the spectral characterizations and electromagnetic field simulations, we unambiguously confirm the enhancement of photoactivity due to coupling of plasmonic hot spot effect to nanostructured semiconductors. Moreover, diverse heterostructures based on the plasmonic NPs on various ZnO nanostructures (films, nanorod arrays, branched nanowires, and mesoporous structures) or functional materials (CuInGaSe2 absorber films, multiferroic BiFeO3 films, visible-light photoactive Cu2S and CdS nanorods) are successfully fabricated using the present synthesis methodology.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2015.08.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electromagnetic fields ; Finite-difference time-domain ; Hot spots ; Nanoparticles ; Nanorods ; Nanostructure ; Photocatalysis ; Photocatalyst ; Photodegradation ; Plasmonic hot spot ; Plasmonics ; Semiconductors ; Surface plasmon resonance</subject><ispartof>Applied catalysis. B, Environmental, 2016-02, Vol.181, p.612-624</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a85b14ca866b1be91e4483ef948918ae63a4006677ac4361bdc091e1e45569493</citedby><cites>FETCH-LOGICAL-c455t-a85b14ca866b1be91e4483ef948918ae63a4006677ac4361bdc091e1e45569493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337315300874$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Tung-Han</creatorcontrib><creatorcontrib>Harn, Yeu-Wei</creatorcontrib><creatorcontrib>Pan, Ming-Yang</creatorcontrib><creatorcontrib>Huang, Li-De</creatorcontrib><creatorcontrib>Chen, Miao-Chun</creatorcontrib><creatorcontrib>Li, Ben-Yuan</creatorcontrib><creatorcontrib>Liu, Pei-Hsuan</creatorcontrib><creatorcontrib>Chen, Po-Yen</creatorcontrib><creatorcontrib>Lin, Chun-Cheng</creatorcontrib><creatorcontrib>Wei, Pei-Kuen</creatorcontrib><creatorcontrib>Chen, Lih-Juann</creatorcontrib><creatorcontrib>Wu, Jenn-Ming</creatorcontrib><title>Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•The fabricated photocatalysts have high number density of plasmonic hot spots.•The hot spot effect between plasmonic particles is depicted by 3D FDTD simulation.•The electromagnetic fields are strengthened by plasmonic hot spots.•The enhancement of photoactivity due to plasmonic hot spot effect is confirmed.•We realize how interparticle gap will induce the strong plasmonic hot spot effect.
Plasmonic hot spots located among closely dispersed plasmonic nanoparticles (NPs) are intensively studied for efficient conversion of solar to chemical or electrical energy applications. Here, a successful method to synthesize high-density unaggregated plasmonic Ag or Au NPs (AgNPs or AuNPs) onto nanostructured semiconductors with 3D densely organized NPs is demonstrated. The densely dispersed plasmonic AgNPs or AuNPs are assembled chemically on the entire surface of the ZnO nanorods through bifunctional thioctic acid bridging linkers. The fabricated NPs possessing small interparticle gaps generate numerous plasmonic hot spots which boost catalytic activities of the photocatalysts. As depicted by exact 3D finite-difference time domain simulations, the electromagnetic fields are magnified exponentially among interparticle gaps, hot spots, due to the plasmonic coupling effects of the neighboring AgNPs. The electromagnetic fields are strengthened by decreasing the interparticle spacing of coupled AgNPs. It is consistent with the result that the photocatalytic reaction rate increases non-linearly with the Ag content under full-spectrum light irradiation. Using the spectral characterizations and electromagnetic field simulations, we unambiguously confirm the enhancement of photoactivity due to coupling of plasmonic hot spot effect to nanostructured semiconductors. Moreover, diverse heterostructures based on the plasmonic NPs on various ZnO nanostructures (films, nanorod arrays, branched nanowires, and mesoporous structures) or functional materials (CuInGaSe2 absorber films, multiferroic BiFeO3 films, visible-light photoactive Cu2S and CdS nanorods) are successfully fabricated using the present synthesis methodology.</description><subject>Electromagnetic fields</subject><subject>Finite-difference time-domain</subject><subject>Hot spots</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Photocatalysis</subject><subject>Photocatalyst</subject><subject>Photodegradation</subject><subject>Plasmonic hot spot</subject><subject>Plasmonics</subject><subject>Semiconductors</subject><subject>Surface plasmon resonance</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0btqwzAUBmBRWmh6eYMOGrvYlSxZkZdCCb1BoEszC1k-jhVsy5GUlLx9FVI6lk5avv9wdH6E7ijJKaHiYZPryehY5wWhZU5kTig_QzMq5yxjUrJzNCNVITLG5uwSXYWwIYQUrJAztF310evOrjvcwBhsPOCp12FwozW4cxGHycWAv2zs8O6XQg8mejfo9QgxwdZC3-DWeWyHybs9NHhKYZeW0v3hKLSJdm-jhXCDLlrdB7j9ea_R6uX5c_GWLT9e3xdPy8zwsoyZlmVNudFSiJrWUFHgXDJoKy4rKjUIpjkhQszn2nAmaN0YklBiZSkqXrFrdH-amxba7iBENdhgoO_1CG4XFJVFyWWRTvIPSqRInIpE-Yka70Lw0KrJ20H7g6JEHctQG3UqQx3LUESqVEaKPZ5ikH68t-BVMBZGA4316ZSqcfbvAd_x25au</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Yang, Tung-Han</creator><creator>Harn, Yeu-Wei</creator><creator>Pan, Ming-Yang</creator><creator>Huang, Li-De</creator><creator>Chen, Miao-Chun</creator><creator>Li, Ben-Yuan</creator><creator>Liu, Pei-Hsuan</creator><creator>Chen, Po-Yen</creator><creator>Lin, Chun-Cheng</creator><creator>Wei, Pei-Kuen</creator><creator>Chen, Lih-Juann</creator><creator>Wu, Jenn-Ming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities</title><author>Yang, Tung-Han ; Harn, Yeu-Wei ; Pan, Ming-Yang ; Huang, Li-De ; Chen, Miao-Chun ; Li, Ben-Yuan ; Liu, Pei-Hsuan ; Chen, Po-Yen ; Lin, Chun-Cheng ; Wei, Pei-Kuen ; Chen, Lih-Juann ; Wu, Jenn-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a85b14ca866b1be91e4483ef948918ae63a4006677ac4361bdc091e1e45569493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electromagnetic fields</topic><topic>Finite-difference time-domain</topic><topic>Hot spots</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Photocatalysis</topic><topic>Photocatalyst</topic><topic>Photodegradation</topic><topic>Plasmonic hot spot</topic><topic>Plasmonics</topic><topic>Semiconductors</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tung-Han</creatorcontrib><creatorcontrib>Harn, Yeu-Wei</creatorcontrib><creatorcontrib>Pan, Ming-Yang</creatorcontrib><creatorcontrib>Huang, Li-De</creatorcontrib><creatorcontrib>Chen, Miao-Chun</creatorcontrib><creatorcontrib>Li, Ben-Yuan</creatorcontrib><creatorcontrib>Liu, Pei-Hsuan</creatorcontrib><creatorcontrib>Chen, Po-Yen</creatorcontrib><creatorcontrib>Lin, Chun-Cheng</creatorcontrib><creatorcontrib>Wei, Pei-Kuen</creatorcontrib><creatorcontrib>Chen, Lih-Juann</creatorcontrib><creatorcontrib>Wu, Jenn-Ming</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tung-Han</au><au>Harn, Yeu-Wei</au><au>Pan, Ming-Yang</au><au>Huang, Li-De</au><au>Chen, Miao-Chun</au><au>Li, Ben-Yuan</au><au>Liu, Pei-Hsuan</au><au>Chen, Po-Yen</au><au>Lin, Chun-Cheng</au><au>Wei, Pei-Kuen</au><au>Chen, Lih-Juann</au><au>Wu, Jenn-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>181</volume><spage>612</spage><epage>624</epage><pages>612-624</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•The fabricated photocatalysts have high number density of plasmonic hot spots.•The hot spot effect between plasmonic particles is depicted by 3D FDTD simulation.•The electromagnetic fields are strengthened by plasmonic hot spots.•The enhancement of photoactivity due to plasmonic hot spot effect is confirmed.•We realize how interparticle gap will induce the strong plasmonic hot spot effect.
Plasmonic hot spots located among closely dispersed plasmonic nanoparticles (NPs) are intensively studied for efficient conversion of solar to chemical or electrical energy applications. Here, a successful method to synthesize high-density unaggregated plasmonic Ag or Au NPs (AgNPs or AuNPs) onto nanostructured semiconductors with 3D densely organized NPs is demonstrated. The densely dispersed plasmonic AgNPs or AuNPs are assembled chemically on the entire surface of the ZnO nanorods through bifunctional thioctic acid bridging linkers. The fabricated NPs possessing small interparticle gaps generate numerous plasmonic hot spots which boost catalytic activities of the photocatalysts. As depicted by exact 3D finite-difference time domain simulations, the electromagnetic fields are magnified exponentially among interparticle gaps, hot spots, due to the plasmonic coupling effects of the neighboring AgNPs. The electromagnetic fields are strengthened by decreasing the interparticle spacing of coupled AgNPs. It is consistent with the result that the photocatalytic reaction rate increases non-linearly with the Ag content under full-spectrum light irradiation. Using the spectral characterizations and electromagnetic field simulations, we unambiguously confirm the enhancement of photoactivity due to coupling of plasmonic hot spot effect to nanostructured semiconductors. Moreover, diverse heterostructures based on the plasmonic NPs on various ZnO nanostructures (films, nanorod arrays, branched nanowires, and mesoporous structures) or functional materials (CuInGaSe2 absorber films, multiferroic BiFeO3 films, visible-light photoactive Cu2S and CdS nanorods) are successfully fabricated using the present synthesis methodology.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2015.08.014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2016-02, Vol.181, p.612-624 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825482373 |
source | Elsevier ScienceDirect Journals |
subjects | Electromagnetic fields Finite-difference time-domain Hot spots Nanoparticles Nanorods Nanostructure Photocatalysis Photocatalyst Photodegradation Plasmonic hot spot Plasmonics Semiconductors Surface plasmon resonance |
title | Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20density%20plasmonic%20hot%20spots%20with%20ultrahigh%20electromagnetic%20field%20for%20improved%20photocatalytic%20activities&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Yang,%20Tung-Han&rft.date=2016-02-01&rft.volume=181&rft.spage=612&rft.epage=624&rft.pages=612-624&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2015.08.014&rft_dat=%3Cproquest_cross%3E1808682516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808682516&rft_id=info:pmid/&rft_els_id=S0926337315300874&rfr_iscdi=true |