Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor
In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2016-02, Vol.238, p.379-388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | |
container_start_page | 379 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 238 |
creator | Zhao, Jiuxuan Liu, Minliang Liang, Liang Wang, Wen Xie, Jin |
description | In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing. |
doi_str_mv | 10.1016/j.sna.2015.12.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825481538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424715302788</els_id><sourcerecordid>1825481538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</originalsourceid><addsrcrecordid>eNp9kM1u3SAQhVHVSr1N-wDdsezGLj--xlZXUX7aSJGyaddogLHElW1uAEdKHiNPnElu1l0xwJkzcz7GvkvRSiH7n4e2rNAqIfetVK1Q4we2k4PRjRb9-JHtxKi6plOd-cy-lHIQQmhtzI49n8fsUl6RHyHX6LcZKvIFasXM_QylxCl6qDGtHNbAfVo9rjWfXgJW9G-Vg4KBU6Ev-THHtdLtIea6wczjcgRfU34zuN9ozhP3-bFU-luiz8nBDGTLC64l5a_s0wRzwW_v5xn7d3319-JPc3v3--bi_Lbx2sjaoJO9C2Eyuu-mcfJeGS81ghOq72EIo9MeJrfvx35wxoDQxICIhKnzUg5Kn7EfJ99jTvcblmqXWDzOtAumrVjS7LtB7vVAUnmS0rKlZJwsZVwgP1op7Ct_e7DE377yt1JZ4k89v049SBkeImZbfESKGWImaDak-J_uF2ZWkmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481538</pqid></control><display><type>article</type><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</creator><creatorcontrib>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</creatorcontrib><description>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2015.12.029</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D printing ; Classification ; Computer simulation ; Design engineering ; Impactors ; Microbalances ; Particulate emissions ; PM 2.5 monitoring ; Quartz crystal microbalance ; Sensors ; Virtual impactor</subject><ispartof>Sensors and actuators. A. Physical., 2016-02, Vol.238, p.379-388</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</citedby><cites>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2015.12.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Jiuxuan</creatorcontrib><creatorcontrib>Liu, Minliang</creatorcontrib><creatorcontrib>Liang, Liang</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><title>Sensors and actuators. A. Physical.</title><description>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</description><subject>3D printing</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Impactors</subject><subject>Microbalances</subject><subject>Particulate emissions</subject><subject>PM 2.5 monitoring</subject><subject>Quartz crystal microbalance</subject><subject>Sensors</subject><subject>Virtual impactor</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3SAQhVHVSr1N-wDdsezGLj--xlZXUX7aSJGyaddogLHElW1uAEdKHiNPnElu1l0xwJkzcz7GvkvRSiH7n4e2rNAqIfetVK1Q4we2k4PRjRb9-JHtxKi6plOd-cy-lHIQQmhtzI49n8fsUl6RHyHX6LcZKvIFasXM_QylxCl6qDGtHNbAfVo9rjWfXgJW9G-Vg4KBU6Ev-THHtdLtIea6wczjcgRfU34zuN9ozhP3-bFU-luiz8nBDGTLC64l5a_s0wRzwW_v5xn7d3319-JPc3v3--bi_Lbx2sjaoJO9C2Eyuu-mcfJeGS81ghOq72EIo9MeJrfvx35wxoDQxICIhKnzUg5Kn7EfJ99jTvcblmqXWDzOtAumrVjS7LtB7vVAUnmS0rKlZJwsZVwgP1op7Ct_e7DE377yt1JZ4k89v049SBkeImZbfESKGWImaDak-J_uF2ZWkmI</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zhao, Jiuxuan</creator><creator>Liu, Minliang</creator><creator>Liang, Liang</creator><creator>Wang, Wen</creator><creator>Xie, Jin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><author>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D printing</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Impactors</topic><topic>Microbalances</topic><topic>Particulate emissions</topic><topic>PM 2.5 monitoring</topic><topic>Quartz crystal microbalance</topic><topic>Sensors</topic><topic>Virtual impactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jiuxuan</creatorcontrib><creatorcontrib>Liu, Minliang</creatorcontrib><creatorcontrib>Liang, Liang</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jiuxuan</au><au>Liu, Minliang</au><au>Liang, Liang</au><au>Wang, Wen</au><au>Xie, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>238</volume><spage>379</spage><epage>388</epage><pages>379-388</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2015.12.029</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2016-02, Vol.238, p.379-388 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825481538 |
source | Access via ScienceDirect (Elsevier) |
subjects | 3D printing Classification Computer simulation Design engineering Impactors Microbalances Particulate emissions PM 2.5 monitoring Quartz crystal microbalance Sensors Virtual impactor |
title | Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airborne%20particulate%20matter%20classification%20and%20concentration%20detection%20based%20on%203D%20printed%20virtual%20impactor%20and%20quartz%20crystal%20microbalance%20sensor&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Zhao,%20Jiuxuan&rft.date=2016-02-01&rft.volume=238&rft.spage=379&rft.epage=388&rft.pages=379-388&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2015.12.029&rft_dat=%3Cproquest_cross%3E1825481538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481538&rft_id=info:pmid/&rft_els_id=S0924424715302788&rfr_iscdi=true |