Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor

In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2016-02, Vol.238, p.379-388
Hauptverfasser: Zhao, Jiuxuan, Liu, Minliang, Liang, Liang, Wang, Wen, Xie, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue
container_start_page 379
container_title Sensors and actuators. A. Physical.
container_volume 238
creator Zhao, Jiuxuan
Liu, Minliang
Liang, Liang
Wang, Wen
Xie, Jin
description In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.
doi_str_mv 10.1016/j.sna.2015.12.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825481538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424715302788</els_id><sourcerecordid>1825481538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</originalsourceid><addsrcrecordid>eNp9kM1u3SAQhVHVSr1N-wDdsezGLj--xlZXUX7aSJGyaddogLHElW1uAEdKHiNPnElu1l0xwJkzcz7GvkvRSiH7n4e2rNAqIfetVK1Q4we2k4PRjRb9-JHtxKi6plOd-cy-lHIQQmhtzI49n8fsUl6RHyHX6LcZKvIFasXM_QylxCl6qDGtHNbAfVo9rjWfXgJW9G-Vg4KBU6Ev-THHtdLtIea6wczjcgRfU34zuN9ozhP3-bFU-luiz8nBDGTLC64l5a_s0wRzwW_v5xn7d3319-JPc3v3--bi_Lbx2sjaoJO9C2Eyuu-mcfJeGS81ghOq72EIo9MeJrfvx35wxoDQxICIhKnzUg5Kn7EfJ99jTvcblmqXWDzOtAumrVjS7LtB7vVAUnmS0rKlZJwsZVwgP1op7Ct_e7DE377yt1JZ4k89v049SBkeImZbfESKGWImaDak-J_uF2ZWkmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481538</pqid></control><display><type>article</type><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</creator><creatorcontrib>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</creatorcontrib><description>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2015.12.029</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D printing ; Classification ; Computer simulation ; Design engineering ; Impactors ; Microbalances ; Particulate emissions ; PM 2.5 monitoring ; Quartz crystal microbalance ; Sensors ; Virtual impactor</subject><ispartof>Sensors and actuators. A. Physical., 2016-02, Vol.238, p.379-388</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</citedby><cites>FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2015.12.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Jiuxuan</creatorcontrib><creatorcontrib>Liu, Minliang</creatorcontrib><creatorcontrib>Liang, Liang</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><title>Sensors and actuators. A. Physical.</title><description>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</description><subject>3D printing</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Impactors</subject><subject>Microbalances</subject><subject>Particulate emissions</subject><subject>PM 2.5 monitoring</subject><subject>Quartz crystal microbalance</subject><subject>Sensors</subject><subject>Virtual impactor</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3SAQhVHVSr1N-wDdsezGLj--xlZXUX7aSJGyaddogLHElW1uAEdKHiNPnElu1l0xwJkzcz7GvkvRSiH7n4e2rNAqIfetVK1Q4we2k4PRjRb9-JHtxKi6plOd-cy-lHIQQmhtzI49n8fsUl6RHyHX6LcZKvIFasXM_QylxCl6qDGtHNbAfVo9rjWfXgJW9G-Vg4KBU6Ev-THHtdLtIea6wczjcgRfU34zuN9ozhP3-bFU-luiz8nBDGTLC64l5a_s0wRzwW_v5xn7d3319-JPc3v3--bi_Lbx2sjaoJO9C2Eyuu-mcfJeGS81ghOq72EIo9MeJrfvx35wxoDQxICIhKnzUg5Kn7EfJ99jTvcblmqXWDzOtAumrVjS7LtB7vVAUnmS0rKlZJwsZVwgP1op7Ct_e7DE377yt1JZ4k89v049SBkeImZbfESKGWImaDak-J_uF2ZWkmI</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zhao, Jiuxuan</creator><creator>Liu, Minliang</creator><creator>Liang, Liang</creator><creator>Wang, Wen</creator><creator>Xie, Jin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</title><author>Zhao, Jiuxuan ; Liu, Minliang ; Liang, Liang ; Wang, Wen ; Xie, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-eb16bddf7364f9fcc27c13eab0266a8d9b3cafb56968b77a03092873df4c11823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D printing</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Impactors</topic><topic>Microbalances</topic><topic>Particulate emissions</topic><topic>PM 2.5 monitoring</topic><topic>Quartz crystal microbalance</topic><topic>Sensors</topic><topic>Virtual impactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jiuxuan</creatorcontrib><creatorcontrib>Liu, Minliang</creatorcontrib><creatorcontrib>Liang, Liang</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jiuxuan</au><au>Liu, Minliang</au><au>Liang, Liang</au><au>Wang, Wen</au><au>Xie, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>238</volume><spage>379</spage><epage>388</epage><pages>379-388</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>In this paper, design, fabrication and experiment of a miniature system for detection of airborne particulate matter (PM) are presented. The miniature system contains a virtual impactor and a quartz crystal microbalance (QCM) resonant sensor. The virtual impactor is fabricated by three-dimensional (3D) printing process for classifying airborne particles according to their size. The QCM resonant sensor is utilized to detect the mass of the separated particles from the virtual impactor. The design of virtual impactor is optimized by computational fluid dynamics simulation and the QCM for its resonance in thickness shear mode is analyzed by finite element method. Silicon dioxide powders with diameter in the range from 0.5 to 8μm are successfully separated according to their size by the virtual impactor, which indicates that the classification characteristic coincides with the theoretical and simulation results. PM concentration in a chamber is measured by the proposed monitoring system and the experimental results show that the resonant frequency of the QCM turns downward linearly with the PM mass loading increasing.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2015.12.029</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2016-02, Vol.238, p.379-388
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_1825481538
source Access via ScienceDirect (Elsevier)
subjects 3D printing
Classification
Computer simulation
Design engineering
Impactors
Microbalances
Particulate emissions
PM 2.5 monitoring
Quartz crystal microbalance
Sensors
Virtual impactor
title Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airborne%20particulate%20matter%20classification%20and%20concentration%20detection%20based%20on%203D%20printed%20virtual%20impactor%20and%20quartz%20crystal%20microbalance%20sensor&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Zhao,%20Jiuxuan&rft.date=2016-02-01&rft.volume=238&rft.spage=379&rft.epage=388&rft.pages=379-388&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2015.12.029&rft_dat=%3Cproquest_cross%3E1825481538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481538&rft_id=info:pmid/&rft_els_id=S0924424715302788&rfr_iscdi=true