An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems
Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated wi...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2016-07, Vol.104, p.14-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | Knowledge-based systems |
container_volume | 104 |
creator | Nseef, Shams K. Abdullah, Salwani Turky, Ayad Kendall, Graham |
description | Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results. |
doi_str_mv | 10.1016/j.knosys.2016.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825481417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705116300363</els_id><sourcerecordid>1825481417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw89emmdtEmbXoRl8QsWvOjVkOZDs6ZNTdqF_fdmqWdPwzDzvvPOg9ANhgIDru92xffg4yEWZeoKIAUAPUErzJoybwi0p2gFLYW8AYrP0UWMOwAoS8xW6GM9ZEKJcbJ7nfWzm2w--nF2YrI-TcJkjZVWuKzTOpPe-eGQCffpg52--sz4kKnDIHorM588ehsX4Rh853Qfr9CZES7q6796id4fH942z_n29ells97mMsWbckUZpTUxhBpjaiUxrXELnWIN6apWQmtUJ6EudWs6WRkQNWbMNMS0glYCRHWJbhffdPhn1nHiKYrUzolB-zlyzEpKGCa4SatkWZXBxxi04WOwvQgHjoEfcfIdX3DyI04OhCecSXa_yHR6Y2914FFaPUitbNBy4srb_w1-AYoPgtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481417</pqid></control><display><type>article</type><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</creator><creatorcontrib>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</creatorcontrib><description>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2016.04.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive algorithms ; Adaptive multi-population method ; Algorithms ; Artificial bee colony algorithm ; Dopants ; Dynamic optimisation ; Dynamical systems ; Dynamics ; Knowledge base ; Meta-heuristics ; Optimization ; Swarm intelligence</subject><ispartof>Knowledge-based systems, 2016-07, Vol.104, p.14-23</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</citedby><cites>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2016.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Nseef, Shams K.</creatorcontrib><creatorcontrib>Abdullah, Salwani</creatorcontrib><creatorcontrib>Turky, Ayad</creatorcontrib><creatorcontrib>Kendall, Graham</creatorcontrib><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><title>Knowledge-based systems</title><description>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</description><subject>Adaptive algorithms</subject><subject>Adaptive multi-population method</subject><subject>Algorithms</subject><subject>Artificial bee colony algorithm</subject><subject>Dopants</subject><subject>Dynamic optimisation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Knowledge base</subject><subject>Meta-heuristics</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw89emmdtEmbXoRl8QsWvOjVkOZDs6ZNTdqF_fdmqWdPwzDzvvPOg9ANhgIDru92xffg4yEWZeoKIAUAPUErzJoybwi0p2gFLYW8AYrP0UWMOwAoS8xW6GM9ZEKJcbJ7nfWzm2w--nF2YrI-TcJkjZVWuKzTOpPe-eGQCffpg52--sz4kKnDIHorM588ehsX4Rh853Qfr9CZES7q6796id4fH942z_n29ells97mMsWbckUZpTUxhBpjaiUxrXELnWIN6apWQmtUJ6EudWs6WRkQNWbMNMS0glYCRHWJbhffdPhn1nHiKYrUzolB-zlyzEpKGCa4SatkWZXBxxi04WOwvQgHjoEfcfIdX3DyI04OhCecSXa_yHR6Y2914FFaPUitbNBy4srb_w1-AYoPgtM</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Nseef, Shams K.</creator><creator>Abdullah, Salwani</creator><creator>Turky, Ayad</creator><creator>Kendall, Graham</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160715</creationdate><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><author>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive multi-population method</topic><topic>Algorithms</topic><topic>Artificial bee colony algorithm</topic><topic>Dopants</topic><topic>Dynamic optimisation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Knowledge base</topic><topic>Meta-heuristics</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nseef, Shams K.</creatorcontrib><creatorcontrib>Abdullah, Salwani</creatorcontrib><creatorcontrib>Turky, Ayad</creatorcontrib><creatorcontrib>Kendall, Graham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nseef, Shams K.</au><au>Abdullah, Salwani</au><au>Turky, Ayad</au><au>Kendall, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</atitle><jtitle>Knowledge-based systems</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>104</volume><spage>14</spage><epage>23</epage><pages>14-23</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2016.04.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2016-07, Vol.104, p.14-23 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825481417 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adaptive algorithms Adaptive multi-population method Algorithms Artificial bee colony algorithm Dopants Dynamic optimisation Dynamical systems Dynamics Knowledge base Meta-heuristics Optimization Swarm intelligence |
title | An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20multi-population%20artificial%20bee%20colony%20algorithm%20for%20dynamic%20optimisation%20problems&rft.jtitle=Knowledge-based%20systems&rft.au=Nseef,%20Shams%20K.&rft.date=2016-07-15&rft.volume=104&rft.spage=14&rft.epage=23&rft.pages=14-23&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2016.04.005&rft_dat=%3Cproquest_cross%3E1825481417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481417&rft_id=info:pmid/&rft_els_id=S0950705116300363&rfr_iscdi=true |