An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems

Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2016-07, Vol.104, p.14-23
Hauptverfasser: Nseef, Shams K., Abdullah, Salwani, Turky, Ayad, Kendall, Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 14
container_title Knowledge-based systems
container_volume 104
creator Nseef, Shams K.
Abdullah, Salwani
Turky, Ayad
Kendall, Graham
description Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.
doi_str_mv 10.1016/j.knosys.2016.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825481417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705116300363</els_id><sourcerecordid>1825481417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw89emmdtEmbXoRl8QsWvOjVkOZDs6ZNTdqF_fdmqWdPwzDzvvPOg9ANhgIDru92xffg4yEWZeoKIAUAPUErzJoybwi0p2gFLYW8AYrP0UWMOwAoS8xW6GM9ZEKJcbJ7nfWzm2w--nF2YrI-TcJkjZVWuKzTOpPe-eGQCffpg52--sz4kKnDIHorM588ehsX4Rh853Qfr9CZES7q6796id4fH942z_n29ells97mMsWbckUZpTUxhBpjaiUxrXELnWIN6apWQmtUJ6EudWs6WRkQNWbMNMS0glYCRHWJbhffdPhn1nHiKYrUzolB-zlyzEpKGCa4SatkWZXBxxi04WOwvQgHjoEfcfIdX3DyI04OhCecSXa_yHR6Y2914FFaPUitbNBy4srb_w1-AYoPgtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481417</pqid></control><display><type>article</type><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</creator><creatorcontrib>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</creatorcontrib><description>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2016.04.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive algorithms ; Adaptive multi-population method ; Algorithms ; Artificial bee colony algorithm ; Dopants ; Dynamic optimisation ; Dynamical systems ; Dynamics ; Knowledge base ; Meta-heuristics ; Optimization ; Swarm intelligence</subject><ispartof>Knowledge-based systems, 2016-07, Vol.104, p.14-23</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</citedby><cites>FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2016.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Nseef, Shams K.</creatorcontrib><creatorcontrib>Abdullah, Salwani</creatorcontrib><creatorcontrib>Turky, Ayad</creatorcontrib><creatorcontrib>Kendall, Graham</creatorcontrib><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><title>Knowledge-based systems</title><description>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</description><subject>Adaptive algorithms</subject><subject>Adaptive multi-population method</subject><subject>Algorithms</subject><subject>Artificial bee colony algorithm</subject><subject>Dopants</subject><subject>Dynamic optimisation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Knowledge base</subject><subject>Meta-heuristics</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw89emmdtEmbXoRl8QsWvOjVkOZDs6ZNTdqF_fdmqWdPwzDzvvPOg9ANhgIDru92xffg4yEWZeoKIAUAPUErzJoybwi0p2gFLYW8AYrP0UWMOwAoS8xW6GM9ZEKJcbJ7nfWzm2w--nF2YrI-TcJkjZVWuKzTOpPe-eGQCffpg52--sz4kKnDIHorM588ehsX4Rh853Qfr9CZES7q6796id4fH942z_n29ells97mMsWbckUZpTUxhBpjaiUxrXELnWIN6apWQmtUJ6EudWs6WRkQNWbMNMS0glYCRHWJbhffdPhn1nHiKYrUzolB-zlyzEpKGCa4SatkWZXBxxi04WOwvQgHjoEfcfIdX3DyI04OhCecSXa_yHR6Y2914FFaPUitbNBy4srb_w1-AYoPgtM</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Nseef, Shams K.</creator><creator>Abdullah, Salwani</creator><creator>Turky, Ayad</creator><creator>Kendall, Graham</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160715</creationdate><title>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</title><author>Nseef, Shams K. ; Abdullah, Salwani ; Turky, Ayad ; Kendall, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d585564f45fff6dc156190bd874b39c09fdbc062e9fbc3f0a6188f74f9a53a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive multi-population method</topic><topic>Algorithms</topic><topic>Artificial bee colony algorithm</topic><topic>Dopants</topic><topic>Dynamic optimisation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Knowledge base</topic><topic>Meta-heuristics</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nseef, Shams K.</creatorcontrib><creatorcontrib>Abdullah, Salwani</creatorcontrib><creatorcontrib>Turky, Ayad</creatorcontrib><creatorcontrib>Kendall, Graham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nseef, Shams K.</au><au>Abdullah, Salwani</au><au>Turky, Ayad</au><au>Kendall, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems</atitle><jtitle>Knowledge-based systems</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>104</volume><spage>14</spage><epage>23</epage><pages>14-23</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2016.04.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2016-07, Vol.104, p.14-23
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1825481417
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive algorithms
Adaptive multi-population method
Algorithms
Artificial bee colony algorithm
Dopants
Dynamic optimisation
Dynamical systems
Dynamics
Knowledge base
Meta-heuristics
Optimization
Swarm intelligence
title An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20multi-population%20artificial%20bee%20colony%20algorithm%20for%20dynamic%20optimisation%20problems&rft.jtitle=Knowledge-based%20systems&rft.au=Nseef,%20Shams%20K.&rft.date=2016-07-15&rft.volume=104&rft.spage=14&rft.epage=23&rft.pages=14-23&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2016.04.005&rft_dat=%3Cproquest_cross%3E1825481417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481417&rft_id=info:pmid/&rft_els_id=S0950705116300363&rfr_iscdi=true