An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions

•Introduction and application of a modified Weibull stress incorporating plastic strain effects.•Fracture toughness values for an A515 Gr 65 steel depend strongly on specimen geometry.•Marked differences in crack front stresses between PCVN and large SE(B) specimens.•Toughness predictions depend str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2015-09, Vol.146, p.185-209
Hauptverfasser: Ruggieri, Claudio, Savioli, Rafael G., Dodds, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue
container_start_page 185
container_title Engineering fracture mechanics
container_volume 146
creator Ruggieri, Claudio
Savioli, Rafael G.
Dodds, Robert H.
description •Introduction and application of a modified Weibull stress incorporating plastic strain effects.•Fracture toughness values for an A515 Gr 65 steel depend strongly on specimen geometry.•Marked differences in crack front stresses between PCVN and large SE(B) specimens.•Toughness predictions depend strongly on the adopted plastic strain model.•The modified Weibull stress model provides very good toughness predictions. This work extends a micromechanics model for cleavage fracture incorporating effects of plastic strain to determine the reference temperature, T0, for an A515 Gr 65 pressure vessel steel based on a modified Weibull stress (σ̃w). Non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens define the relationship between σ̃w and J from which the variation of fracture toughness across different crack configurations is predicted. The modified Weibull stress methodology yields estimates of T0 from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of larger crack configurations.
doi_str_mv 10.1016/j.engfracmech.2015.06.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825480735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794415003975</els_id><sourcerecordid>1825480735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3e9c2bc3ebf702e612066c2cdf98f6987bf9d35409dbd935e654b6b2218fd40f3</originalsourceid><addsrcrecordid>eNqNUUuO1DAUtEYgTTNwB7Nj0-E5HydhN2oN0NJIsBjWlmM_p91K7GC7R-odd-A43IaTjJuAYMnKJb-qep8i5DWDggHjb48FutEEqWZUh6IE1hTAC-jaK7JhXVtt24o1z8gGgGXc1_U1eRHjEQBa3sGG_Lh1NDtYhxisG-mM6eC1n_x4psYHqryLKUjrUoYhoEo2_1BvKE4yJqt-fvu-rIhexkingDT503hwGCPNVfpZhkT3-3f0zpis_yWOCyo7o6Mj-twynKl0mv4xWjtS76iaUD7KEf96LwG1Xad4SZ4bOUV89fu9IV_e3z3sPm7vP33Y727vt6pq6rStsFfloCocTAslclYC56pU2vSd4X3XDqbXmQm9HnRfNcibeuBDWbLO6BpMdUPerL5L8F9PGJOYbVQ4TdKhP0XBurKpO2irJlP7laqCjzGgEUuwswxnwUBcAhNH8U9g4hKYAC5yYFm7W7WYd3m0GERUFp3K-17uLrS3_-HyBJRwrLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825480735</pqid></control><display><type>article</type><title>An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ruggieri, Claudio ; Savioli, Rafael G. ; Dodds, Robert H.</creator><creatorcontrib>Ruggieri, Claudio ; Savioli, Rafael G. ; Dodds, Robert H.</creatorcontrib><description>•Introduction and application of a modified Weibull stress incorporating plastic strain effects.•Fracture toughness values for an A515 Gr 65 steel depend strongly on specimen geometry.•Marked differences in crack front stresses between PCVN and large SE(B) specimens.•Toughness predictions depend strongly on the adopted plastic strain model.•The modified Weibull stress model provides very good toughness predictions. This work extends a micromechanics model for cleavage fracture incorporating effects of plastic strain to determine the reference temperature, T0, for an A515 Gr 65 pressure vessel steel based on a modified Weibull stress (σ̃w). Non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens define the relationship between σ̃w and J from which the variation of fracture toughness across different crack configurations is predicted. The modified Weibull stress methodology yields estimates of T0 from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of larger crack configurations.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2015.06.087</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cleavage fracture ; Estimates ; Fracture mechanics ; Local approach ; Mathematical models ; Methodology ; Plastic deformation ; Plastic strain ; Probabilistic fracture mechanics ; Strain ; Weibull stress</subject><ispartof>Engineering fracture mechanics, 2015-09, Vol.146, p.185-209</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3e9c2bc3ebf702e612066c2cdf98f6987bf9d35409dbd935e654b6b2218fd40f3</citedby><cites>FETCH-LOGICAL-c354t-3e9c2bc3ebf702e612066c2cdf98f6987bf9d35409dbd935e654b6b2218fd40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2015.06.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Ruggieri, Claudio</creatorcontrib><creatorcontrib>Savioli, Rafael G.</creatorcontrib><creatorcontrib>Dodds, Robert H.</creatorcontrib><title>An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions</title><title>Engineering fracture mechanics</title><description>•Introduction and application of a modified Weibull stress incorporating plastic strain effects.•Fracture toughness values for an A515 Gr 65 steel depend strongly on specimen geometry.•Marked differences in crack front stresses between PCVN and large SE(B) specimens.•Toughness predictions depend strongly on the adopted plastic strain model.•The modified Weibull stress model provides very good toughness predictions. This work extends a micromechanics model for cleavage fracture incorporating effects of plastic strain to determine the reference temperature, T0, for an A515 Gr 65 pressure vessel steel based on a modified Weibull stress (σ̃w). Non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens define the relationship between σ̃w and J from which the variation of fracture toughness across different crack configurations is predicted. The modified Weibull stress methodology yields estimates of T0 from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of larger crack configurations.</description><subject>Cleavage fracture</subject><subject>Estimates</subject><subject>Fracture mechanics</subject><subject>Local approach</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Plastic deformation</subject><subject>Plastic strain</subject><subject>Probabilistic fracture mechanics</subject><subject>Strain</subject><subject>Weibull stress</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUUuO1DAUtEYgTTNwB7Nj0-E5HydhN2oN0NJIsBjWlmM_p91K7GC7R-odd-A43IaTjJuAYMnKJb-qep8i5DWDggHjb48FutEEqWZUh6IE1hTAC-jaK7JhXVtt24o1z8gGgGXc1_U1eRHjEQBa3sGG_Lh1NDtYhxisG-mM6eC1n_x4psYHqryLKUjrUoYhoEo2_1BvKE4yJqt-fvu-rIhexkingDT503hwGCPNVfpZhkT3-3f0zpis_yWOCyo7o6Mj-twynKl0mv4xWjtS76iaUD7KEf96LwG1Xad4SZ4bOUV89fu9IV_e3z3sPm7vP33Y727vt6pq6rStsFfloCocTAslclYC56pU2vSd4X3XDqbXmQm9HnRfNcibeuBDWbLO6BpMdUPerL5L8F9PGJOYbVQ4TdKhP0XBurKpO2irJlP7laqCjzGgEUuwswxnwUBcAhNH8U9g4hKYAC5yYFm7W7WYd3m0GERUFp3K-17uLrS3_-HyBJRwrLo</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Ruggieri, Claudio</creator><creator>Savioli, Rafael G.</creator><creator>Dodds, Robert H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201509</creationdate><title>An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions</title><author>Ruggieri, Claudio ; Savioli, Rafael G. ; Dodds, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3e9c2bc3ebf702e612066c2cdf98f6987bf9d35409dbd935e654b6b2218fd40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cleavage fracture</topic><topic>Estimates</topic><topic>Fracture mechanics</topic><topic>Local approach</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Plastic deformation</topic><topic>Plastic strain</topic><topic>Probabilistic fracture mechanics</topic><topic>Strain</topic><topic>Weibull stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruggieri, Claudio</creatorcontrib><creatorcontrib>Savioli, Rafael G.</creatorcontrib><creatorcontrib>Dodds, Robert H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruggieri, Claudio</au><au>Savioli, Rafael G.</au><au>Dodds, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2015-09</date><risdate>2015</risdate><volume>146</volume><spage>185</spage><epage>209</epage><pages>185-209</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Introduction and application of a modified Weibull stress incorporating plastic strain effects.•Fracture toughness values for an A515 Gr 65 steel depend strongly on specimen geometry.•Marked differences in crack front stresses between PCVN and large SE(B) specimens.•Toughness predictions depend strongly on the adopted plastic strain model.•The modified Weibull stress model provides very good toughness predictions. This work extends a micromechanics model for cleavage fracture incorporating effects of plastic strain to determine the reference temperature, T0, for an A515 Gr 65 pressure vessel steel based on a modified Weibull stress (σ̃w). Non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens define the relationship between σ̃w and J from which the variation of fracture toughness across different crack configurations is predicted. The modified Weibull stress methodology yields estimates of T0 from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of larger crack configurations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2015.06.087</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2015-09, Vol.146, p.185-209
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_1825480735
source Access via ScienceDirect (Elsevier)
subjects Cleavage fracture
Estimates
Fracture mechanics
Local approach
Mathematical models
Methodology
Plastic deformation
Plastic strain
Probabilistic fracture mechanics
Strain
Weibull stress
title An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20engineering%20methodology%20for%20constraint%20corrections%20of%20elastic%E2%80%93plastic%20fracture%20toughness%20%E2%80%93%20Part%20II:%20Effects%20of%20specimen%20geometry%20and%20plastic%20strain%20on%20cleavage%20fracture%20predictions&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Ruggieri,%20Claudio&rft.date=2015-09&rft.volume=146&rft.spage=185&rft.epage=209&rft.pages=185-209&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2015.06.087&rft_dat=%3Cproquest_cross%3E1825480735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825480735&rft_id=info:pmid/&rft_els_id=S0013794415003975&rfr_iscdi=true