A multi-scale modeling framework for instabilities of film/substrate systems

Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorpora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mechanics and Physics of Solids 2016-01, Vol.86, p.150-172
Hauptverfasser: Xu, Fan, Potier-Ferry, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue
container_start_page 150
container_title Journal of the Mechanics and Physics of Solids
container_volume 86
creator Xu, Fan
Potier-Ferry, Michel
description Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to trace the post-buckling evolution path and to predict secondary bifurcations. The proposed multi-scale finite element framework allows sinusoidal and square checkerboard patterns as well as their bifurcation portraits to be described from a quantitative standpoint. Moreover, it provides an efficient way to compute large-scale instability problems with a significant reduction of computational cost compared to full models. [Display omitted] •A multi-scale modeling framework for film/substrate systems is first developed.•The reduced-order model provides an efficient way to simulate large-scale instability problems with numerous undulations.•The proposed macroscopic model can significantly reduce DOF and CPU time by 90% and 98%, respectively.•Bifurcation portrait and post-buckling evolution are investigated from a quantitative standpoint.•A new bifurcation scenario with alternating packets of large and small undulations has been found numerically.
doi_str_mv 10.1016/j.jmps.2015.10.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825477598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509615301952</els_id><sourcerecordid>1825477598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-28be0fe78059f0cdaa4611c21d05d26e38bc36b644f31b845740ecd5dd39a7753</originalsourceid><addsrcrecordid>eNp9kMtOIzEQRXsBEo_hB1j1EhYdyu52PyQ2UQQDUqTZzKwtt10GB3ccXE4Qfz9uBbFkVdLVuVeqUxTXDBYMWHu3WWymHS04MJGDBUB9UpwDcF4JGNqz4oJoAwACOnZerJfltPfJVaSVx3IKBr3bvpQ2qgk_QnwrbYil21JSo_MuOaQy2NI6P93RfqQUVcKSPinhRL-KU6s84dXXvSz-PT78XT1V6z-_n1fLdaXrtksV70cEi10PYrCgjVJNy5jmzIAwvMW6HzM4tk1jazb2jegaQG2EMfWguk7Ul8XtcfdVebmLblLxUwbl5NNyLecsv874MPQHltmbI7uL4X2PlOTkSKP3aothT5L1XDR5dOgzyo-ojoEoov3eZiBntXIjZ7VyVjtnWW0u3R9LmB8-OIyStMOtRuMi6iRNcD_V_wM114Qj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825477598</pqid></control><display><type>article</type><title>A multi-scale modeling framework for instabilities of film/substrate systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Fan ; Potier-Ferry, Michel</creator><creatorcontrib>Xu, Fan ; Potier-Ferry, Michel</creatorcontrib><description>Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to trace the post-buckling evolution path and to predict secondary bifurcations. The proposed multi-scale finite element framework allows sinusoidal and square checkerboard patterns as well as their bifurcation portraits to be described from a quantitative standpoint. Moreover, it provides an efficient way to compute large-scale instability problems with a significant reduction of computational cost compared to full models. [Display omitted] •A multi-scale modeling framework for film/substrate systems is first developed.•The reduced-order model provides an efficient way to simulate large-scale instability problems with numerous undulations.•The proposed macroscopic model can significantly reduce DOF and CPU time by 90% and 98%, respectively.•Bifurcation portrait and post-buckling evolution are investigated from a quantitative standpoint.•A new bifurcation scenario with alternating packets of large and small undulations has been found numerically.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2015.10.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic properties ; Bifurcations ; Chemical Sciences ; Computational efficiency ; Finite element method ; Fourier analysis ; Fourier series ; Instability ; Material chemistry ; Mathematical models ; Multi-scale ; Path-following technique ; Post-buckling ; Stability ; Substrates ; Wrinkling</subject><ispartof>Journal of the Mechanics and Physics of Solids, 2016-01, Vol.86, p.150-172</ispartof><rights>2015 Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-28be0fe78059f0cdaa4611c21d05d26e38bc36b644f31b845740ecd5dd39a7753</citedby><cites>FETCH-LOGICAL-c367t-28be0fe78059f0cdaa4611c21d05d26e38bc36b644f31b845740ecd5dd39a7753</cites><orcidid>0000-0003-3910-5398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2015.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01512998$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><title>A multi-scale modeling framework for instabilities of film/substrate systems</title><title>Journal of the Mechanics and Physics of Solids</title><description>Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to trace the post-buckling evolution path and to predict secondary bifurcations. The proposed multi-scale finite element framework allows sinusoidal and square checkerboard patterns as well as their bifurcation portraits to be described from a quantitative standpoint. Moreover, it provides an efficient way to compute large-scale instability problems with a significant reduction of computational cost compared to full models. [Display omitted] •A multi-scale modeling framework for film/substrate systems is first developed.•The reduced-order model provides an efficient way to simulate large-scale instability problems with numerous undulations.•The proposed macroscopic model can significantly reduce DOF and CPU time by 90% and 98%, respectively.•Bifurcation portrait and post-buckling evolution are investigated from a quantitative standpoint.•A new bifurcation scenario with alternating packets of large and small undulations has been found numerically.</description><subject>Asymptotic properties</subject><subject>Bifurcations</subject><subject>Chemical Sciences</subject><subject>Computational efficiency</subject><subject>Finite element method</subject><subject>Fourier analysis</subject><subject>Fourier series</subject><subject>Instability</subject><subject>Material chemistry</subject><subject>Mathematical models</subject><subject>Multi-scale</subject><subject>Path-following technique</subject><subject>Post-buckling</subject><subject>Stability</subject><subject>Substrates</subject><subject>Wrinkling</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOIzEQRXsBEo_hB1j1EhYdyu52PyQ2UQQDUqTZzKwtt10GB3ccXE4Qfz9uBbFkVdLVuVeqUxTXDBYMWHu3WWymHS04MJGDBUB9UpwDcF4JGNqz4oJoAwACOnZerJfltPfJVaSVx3IKBr3bvpQ2qgk_QnwrbYil21JSo_MuOaQy2NI6P93RfqQUVcKSPinhRL-KU6s84dXXvSz-PT78XT1V6z-_n1fLdaXrtksV70cEi10PYrCgjVJNy5jmzIAwvMW6HzM4tk1jazb2jegaQG2EMfWguk7Ul8XtcfdVebmLblLxUwbl5NNyLecsv874MPQHltmbI7uL4X2PlOTkSKP3aothT5L1XDR5dOgzyo-ojoEoov3eZiBntXIjZ7VyVjtnWW0u3R9LmB8-OIyStMOtRuMi6iRNcD_V_wM114Qj</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Xu, Fan</creator><creator>Potier-Ferry, Michel</creator><general>Elsevier Ltd</general><general>Pergamon-Elsevier Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3910-5398</orcidid></search><sort><creationdate>201601</creationdate><title>A multi-scale modeling framework for instabilities of film/substrate systems</title><author>Xu, Fan ; Potier-Ferry, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-28be0fe78059f0cdaa4611c21d05d26e38bc36b644f31b845740ecd5dd39a7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Bifurcations</topic><topic>Chemical Sciences</topic><topic>Computational efficiency</topic><topic>Finite element method</topic><topic>Fourier analysis</topic><topic>Fourier series</topic><topic>Instability</topic><topic>Material chemistry</topic><topic>Mathematical models</topic><topic>Multi-scale</topic><topic>Path-following technique</topic><topic>Post-buckling</topic><topic>Stability</topic><topic>Substrates</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the Mechanics and Physics of Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Fan</au><au>Potier-Ferry, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scale modeling framework for instabilities of film/substrate systems</atitle><jtitle>Journal of the Mechanics and Physics of Solids</jtitle><date>2016-01</date><risdate>2016</risdate><volume>86</volume><spage>150</spage><epage>172</epage><pages>150-172</pages><issn>0022-5096</issn><abstract>Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to trace the post-buckling evolution path and to predict secondary bifurcations. The proposed multi-scale finite element framework allows sinusoidal and square checkerboard patterns as well as their bifurcation portraits to be described from a quantitative standpoint. Moreover, it provides an efficient way to compute large-scale instability problems with a significant reduction of computational cost compared to full models. [Display omitted] •A multi-scale modeling framework for film/substrate systems is first developed.•The reduced-order model provides an efficient way to simulate large-scale instability problems with numerous undulations.•The proposed macroscopic model can significantly reduce DOF and CPU time by 90% and 98%, respectively.•Bifurcation portrait and post-buckling evolution are investigated from a quantitative standpoint.•A new bifurcation scenario with alternating packets of large and small undulations has been found numerically.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2015.10.003</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3910-5398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the Mechanics and Physics of Solids, 2016-01, Vol.86, p.150-172
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_1825477598
source Access via ScienceDirect (Elsevier)
subjects Asymptotic properties
Bifurcations
Chemical Sciences
Computational efficiency
Finite element method
Fourier analysis
Fourier series
Instability
Material chemistry
Mathematical models
Multi-scale
Path-following technique
Post-buckling
Stability
Substrates
Wrinkling
title A multi-scale modeling framework for instabilities of film/substrate systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scale%20modeling%20framework%20for%20instabilities%20of%20film/substrate%20systems&rft.jtitle=Journal%20of%20the%20Mechanics%20and%20Physics%20of%20Solids&rft.au=Xu,%20Fan&rft.date=2016-01&rft.volume=86&rft.spage=150&rft.epage=172&rft.pages=150-172&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2015.10.003&rft_dat=%3Cproquest_hal_p%3E1825477598%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825477598&rft_id=info:pmid/&rft_els_id=S0022509615301952&rfr_iscdi=true