Development of pre-set counter-rotating streamwise vortices in wavy channel

•Pre-set counter-rotating streamwise vortices have been successfully quantified.•Various size and shape of vortices as Re, channel gap, and amplitude changes.•Disappearance of the mushroom-like structures near the second peak. Development of counter-rotating streamwise vortices in a rectangular chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2016-02, Vol.71, p.77-85
Hauptverfasser: Budiman, A.C., Mitsudharmadi, H., Bouremel, Y., Winoto, S.H., Low, H.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 77
container_title Experimental thermal and fluid science
container_volume 71
creator Budiman, A.C.
Mitsudharmadi, H.
Bouremel, Y.
Winoto, S.H.
Low, H.T.
description •Pre-set counter-rotating streamwise vortices have been successfully quantified.•Various size and shape of vortices as Re, channel gap, and amplitude changes.•Disappearance of the mushroom-like structures near the second peak. Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H=35mm and 50mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re=3100 and H=35mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re=4400 and H=50mm, the splitting of the vortices can also be observed.
doi_str_mv 10.1016/j.expthermflusci.2015.10.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825477554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177715002927</els_id><sourcerecordid>1825477554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9d577f6f33cb4cf6d2429017def004c7870712b6a03eceaeac33fc789446bc683</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqXwDhkYWBJsx4kdiQUVCohKLDBbrnOmrpI42E6gb0-qsrB1Oum-7z_pfoSuCc4IJuXtNoOfPm7At6YZgrYZxaSYUDbBEzQjglcppaI8RTMsKpYSzvk5ughhizEWlOAZen2AERrXt9DFxJmk95AGiIl2QxfBp95FFW33mYToQbXfNkAyOh-thpDYLvlW4y7RG9V10FyiM6OaAFd_c44-lo_vi-d09fb0srhfpTqvyphWdcG5KU2e6zXTpqwpoxUmvAaDMdNccMwJXZcK56BBgdJ5bqZ1xVi51qXI5-jmcLf37muAEGVrg4amUR24IUgiaME4Lwp2hIoFp5QVdFLvDqr2LgQPRvbetsrvJMFyX7fcyv91y33dezrBKb48xGH6fLTg5WRAp6G2HnSUtbPHHfoFZYCS_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808722452</pqid></control><display><type>article</type><title>Development of pre-set counter-rotating streamwise vortices in wavy channel</title><source>Elsevier ScienceDirect Journals</source><creator>Budiman, A.C. ; Mitsudharmadi, H. ; Bouremel, Y. ; Winoto, S.H. ; Low, H.T.</creator><creatorcontrib>Budiman, A.C. ; Mitsudharmadi, H. ; Bouremel, Y. ; Winoto, S.H. ; Low, H.T.</creatorcontrib><description>•Pre-set counter-rotating streamwise vortices have been successfully quantified.•Various size and shape of vortices as Re, channel gap, and amplitude changes.•Disappearance of the mushroom-like structures near the second peak. Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H=35mm and 50mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re=3100 and H=35mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re=4400 and H=50mm, the splitting of the vortices can also be observed.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2015.10.016</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Channels ; Contours ; Counter-rotating streamwise vortices ; Fluid dynamics ; Fluid flow ; Hot-wire anemometry ; Pre-set disturbance ; Reynolds number ; Turbulence ; Turbulent flow ; Vortices ; Wavy channel</subject><ispartof>Experimental thermal and fluid science, 2016-02, Vol.71, p.77-85</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9d577f6f33cb4cf6d2429017def004c7870712b6a03eceaeac33fc789446bc683</citedby><cites>FETCH-LOGICAL-c396t-9d577f6f33cb4cf6d2429017def004c7870712b6a03eceaeac33fc789446bc683</cites><orcidid>0000-0002-3034-4352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0894177715002927$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Budiman, A.C.</creatorcontrib><creatorcontrib>Mitsudharmadi, H.</creatorcontrib><creatorcontrib>Bouremel, Y.</creatorcontrib><creatorcontrib>Winoto, S.H.</creatorcontrib><creatorcontrib>Low, H.T.</creatorcontrib><title>Development of pre-set counter-rotating streamwise vortices in wavy channel</title><title>Experimental thermal and fluid science</title><description>•Pre-set counter-rotating streamwise vortices have been successfully quantified.•Various size and shape of vortices as Re, channel gap, and amplitude changes.•Disappearance of the mushroom-like structures near the second peak. Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H=35mm and 50mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re=3100 and H=35mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re=4400 and H=50mm, the splitting of the vortices can also be observed.</description><subject>Channels</subject><subject>Contours</subject><subject>Counter-rotating streamwise vortices</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hot-wire anemometry</subject><subject>Pre-set disturbance</subject><subject>Reynolds number</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vortices</subject><subject>Wavy channel</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAQhi0EEqXwDhkYWBJsx4kdiQUVCohKLDBbrnOmrpI42E6gb0-qsrB1Oum-7z_pfoSuCc4IJuXtNoOfPm7At6YZgrYZxaSYUDbBEzQjglcppaI8RTMsKpYSzvk5ughhizEWlOAZen2AERrXt9DFxJmk95AGiIl2QxfBp95FFW33mYToQbXfNkAyOh-thpDYLvlW4y7RG9V10FyiM6OaAFd_c44-lo_vi-d09fb0srhfpTqvyphWdcG5KU2e6zXTpqwpoxUmvAaDMdNccMwJXZcK56BBgdJ5bqZ1xVi51qXI5-jmcLf37muAEGVrg4amUR24IUgiaME4Lwp2hIoFp5QVdFLvDqr2LgQPRvbetsrvJMFyX7fcyv91y33dezrBKb48xGH6fLTg5WRAp6G2HnSUtbPHHfoFZYCS_A</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Budiman, A.C.</creator><creator>Mitsudharmadi, H.</creator><creator>Bouremel, Y.</creator><creator>Winoto, S.H.</creator><creator>Low, H.T.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3034-4352</orcidid></search><sort><creationdate>201602</creationdate><title>Development of pre-set counter-rotating streamwise vortices in wavy channel</title><author>Budiman, A.C. ; Mitsudharmadi, H. ; Bouremel, Y. ; Winoto, S.H. ; Low, H.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9d577f6f33cb4cf6d2429017def004c7870712b6a03eceaeac33fc789446bc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Channels</topic><topic>Contours</topic><topic>Counter-rotating streamwise vortices</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hot-wire anemometry</topic><topic>Pre-set disturbance</topic><topic>Reynolds number</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vortices</topic><topic>Wavy channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budiman, A.C.</creatorcontrib><creatorcontrib>Mitsudharmadi, H.</creatorcontrib><creatorcontrib>Bouremel, Y.</creatorcontrib><creatorcontrib>Winoto, S.H.</creatorcontrib><creatorcontrib>Low, H.T.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budiman, A.C.</au><au>Mitsudharmadi, H.</au><au>Bouremel, Y.</au><au>Winoto, S.H.</au><au>Low, H.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of pre-set counter-rotating streamwise vortices in wavy channel</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2016-02</date><risdate>2016</risdate><volume>71</volume><spage>77</spage><epage>85</epage><pages>77-85</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>•Pre-set counter-rotating streamwise vortices have been successfully quantified.•Various size and shape of vortices as Re, channel gap, and amplitude changes.•Disappearance of the mushroom-like structures near the second peak. Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H=35mm and 50mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re=3100 and H=35mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re=4400 and H=50mm, the splitting of the vortices can also be observed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2015.10.016</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3034-4352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2016-02, Vol.71, p.77-85
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_1825477554
source Elsevier ScienceDirect Journals
subjects Channels
Contours
Counter-rotating streamwise vortices
Fluid dynamics
Fluid flow
Hot-wire anemometry
Pre-set disturbance
Reynolds number
Turbulence
Turbulent flow
Vortices
Wavy channel
title Development of pre-set counter-rotating streamwise vortices in wavy channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20pre-set%20counter-rotating%20streamwise%20vortices%20in%20wavy%20channel&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Budiman,%20A.C.&rft.date=2016-02&rft.volume=71&rft.spage=77&rft.epage=85&rft.pages=77-85&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2015.10.016&rft_dat=%3Cproquest_cross%3E1825477554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808722452&rft_id=info:pmid/&rft_els_id=S0894177715002927&rfr_iscdi=true