Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis

•A novel syngas production system is achieved by CG assisted co-electrolysis.•Electricity consumption is significantly reduced with carbon in the anode.•CG assisted co-electrolysis is demonstrated on LSGM-based SOECs. High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2016-07, Vol.173, p.52-58
Hauptverfasser: Lei, Libin, Wang, Yao, Fang, Shumin, Ren, Cong, Liu, Tong, Chen, Fanglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 52
container_title Applied energy
container_volume 173
creator Lei, Libin
Wang, Yao
Fang, Shumin
Ren, Cong
Liu, Tong
Chen, Fanglin
description •A novel syngas production system is achieved by CG assisted co-electrolysis.•Electricity consumption is significantly reduced with carbon in the anode.•CG assisted co-electrolysis is demonstrated on LSGM-based SOECs. High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas for the storage of electrical energy harvested from renewable energy sources. However, a significant portion of electricity input is consumed to overcome a large oxygen potential gradient between the electrodes in conventional solid oxide electrolysis cells (SOECs). In this study, we present a novel and efficient syngas generator integrating carbon gasification and solid oxide co-electrolysis to improve the system efficiency. The feasibility of this new system is demonstrated in La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte-supported SOECs. Both thermodynamic calculation and experimental results show that the potential barrier for co-electrolysis can be reduced by about 1V and the electricity input can be saved by more than 90% upon integration of SOECs with carbon gasification. On the anode side, “CO shuttle” between the electrochemical reaction sites and solid carbon is realized through the Boudouard reaction (C+CO2=2CO). Simultaneous production of CO on the anode side and CO/H2 on the cathode side generates syngas that can serve as fuel for power generation or feedstock for chemical plants. The integration of carbon gasification and SOECs provides a potential pathway for efficient utilization of electricity, coal/biomass, and CO2 to store electrical energy, produce clean fuel, and achieve a carbon neutral sustainable energy supply.
doi_str_mv 10.1016/j.apenergy.2016.03.116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825476707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030626191630441X</els_id><sourcerecordid>1808702673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8797ff2a9823cf47d3c8b07b996e316d47d1de0b513625b8fc341249a4d2bb783</originalsourceid><addsrcrecordid>eNqNkc1u3CAURlHVSJ0meYWIZTd2-fEA3qWK0jTSSN20a4Th4mHkMRNgqvjty8jNOl0h4HxHuvdD6I6SlhIqvh5ac4IZ0ri0rN5bwltKxQe0oUqypqdUfUQbwolomKD9J_Q55wMhhFFGNqg8eh9sgLngvMyjyXi8uEwJccY-JgwT2JIqUhacS0xmBFz2KZ7HPbYmDRWrqVAla8bkHHIBh3OcgsPxNTjANjarJ05L_b5BV95MGW7_ndfo9_fHXw8_mt3Pp-eHb7vGdoKXRslees9Mrxi3vpOOWzUQOfS9AE6Fqy_UARm2lAu2HZS3vKOs603n2DBIxa_Rl9V7SvHlDLnoY8gWpsnMEM9ZU8W2nRSSyP9AiZKECckrKlbUpphzAq9PKRxNWjQl-tKIPui3RvSlEU24ro3U4P0ahDrznwBJ58vmLbiQ6nK0i-E9xV8TsZqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808702673</pqid></control><display><type>article</type><title>Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis</title><source>Elsevier ScienceDirect Journals</source><creator>Lei, Libin ; Wang, Yao ; Fang, Shumin ; Ren, Cong ; Liu, Tong ; Chen, Fanglin</creator><creatorcontrib>Lei, Libin ; Wang, Yao ; Fang, Shumin ; Ren, Cong ; Liu, Tong ; Chen, Fanglin</creatorcontrib><description>•A novel syngas production system is achieved by CG assisted co-electrolysis.•Electricity consumption is significantly reduced with carbon in the anode.•CG assisted co-electrolysis is demonstrated on LSGM-based SOECs. High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas for the storage of electrical energy harvested from renewable energy sources. However, a significant portion of electricity input is consumed to overcome a large oxygen potential gradient between the electrodes in conventional solid oxide electrolysis cells (SOECs). In this study, we present a novel and efficient syngas generator integrating carbon gasification and solid oxide co-electrolysis to improve the system efficiency. The feasibility of this new system is demonstrated in La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte-supported SOECs. Both thermodynamic calculation and experimental results show that the potential barrier for co-electrolysis can be reduced by about 1V and the electricity input can be saved by more than 90% upon integration of SOECs with carbon gasification. On the anode side, “CO shuttle” between the electrochemical reaction sites and solid carbon is realized through the Boudouard reaction (C+CO2=2CO). Simultaneous production of CO on the anode side and CO/H2 on the cathode side generates syngas that can serve as fuel for power generation or feedstock for chemical plants. The integration of carbon gasification and SOECs provides a potential pathway for efficient utilization of electricity, coal/biomass, and CO2 to store electrical energy, produce clean fuel, and achieve a carbon neutral sustainable energy supply.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2016.03.116</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anodes ; Carbon ; Carbon dioxide ; Carbon gasification ; Carbon monoxide ; Electricity ; Gasification ; Oxides ; Solid oxide electrolysis cell ; Syngas production ; Synthetic fuels</subject><ispartof>Applied energy, 2016-07, Vol.173, p.52-58</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8797ff2a9823cf47d3c8b07b996e316d47d1de0b513625b8fc341249a4d2bb783</citedby><cites>FETCH-LOGICAL-c463t-8797ff2a9823cf47d3c8b07b996e316d47d1de0b513625b8fc341249a4d2bb783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030626191630441X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Lei, Libin</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Fang, Shumin</creatorcontrib><creatorcontrib>Ren, Cong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chen, Fanglin</creatorcontrib><title>Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis</title><title>Applied energy</title><description>•A novel syngas production system is achieved by CG assisted co-electrolysis.•Electricity consumption is significantly reduced with carbon in the anode.•CG assisted co-electrolysis is demonstrated on LSGM-based SOECs. High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas for the storage of electrical energy harvested from renewable energy sources. However, a significant portion of electricity input is consumed to overcome a large oxygen potential gradient between the electrodes in conventional solid oxide electrolysis cells (SOECs). In this study, we present a novel and efficient syngas generator integrating carbon gasification and solid oxide co-electrolysis to improve the system efficiency. The feasibility of this new system is demonstrated in La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte-supported SOECs. Both thermodynamic calculation and experimental results show that the potential barrier for co-electrolysis can be reduced by about 1V and the electricity input can be saved by more than 90% upon integration of SOECs with carbon gasification. On the anode side, “CO shuttle” between the electrochemical reaction sites and solid carbon is realized through the Boudouard reaction (C+CO2=2CO). Simultaneous production of CO on the anode side and CO/H2 on the cathode side generates syngas that can serve as fuel for power generation or feedstock for chemical plants. The integration of carbon gasification and SOECs provides a potential pathway for efficient utilization of electricity, coal/biomass, and CO2 to store electrical energy, produce clean fuel, and achieve a carbon neutral sustainable energy supply.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon gasification</subject><subject>Carbon monoxide</subject><subject>Electricity</subject><subject>Gasification</subject><subject>Oxides</subject><subject>Solid oxide electrolysis cell</subject><subject>Syngas production</subject><subject>Synthetic fuels</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u3CAURlHVSJ0meYWIZTd2-fEA3qWK0jTSSN20a4Th4mHkMRNgqvjty8jNOl0h4HxHuvdD6I6SlhIqvh5ac4IZ0ri0rN5bwltKxQe0oUqypqdUfUQbwolomKD9J_Q55wMhhFFGNqg8eh9sgLngvMyjyXi8uEwJccY-JgwT2JIqUhacS0xmBFz2KZ7HPbYmDRWrqVAla8bkHHIBh3OcgsPxNTjANjarJ05L_b5BV95MGW7_ndfo9_fHXw8_mt3Pp-eHb7vGdoKXRslees9Mrxi3vpOOWzUQOfS9AE6Fqy_UARm2lAu2HZS3vKOs603n2DBIxa_Rl9V7SvHlDLnoY8gWpsnMEM9ZU8W2nRSSyP9AiZKECckrKlbUpphzAq9PKRxNWjQl-tKIPui3RvSlEU24ro3U4P0ahDrznwBJ58vmLbiQ6nK0i-E9xV8TsZqj</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Lei, Libin</creator><creator>Wang, Yao</creator><creator>Fang, Shumin</creator><creator>Ren, Cong</creator><creator>Liu, Tong</creator><creator>Chen, Fanglin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20160701</creationdate><title>Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis</title><author>Lei, Libin ; Wang, Yao ; Fang, Shumin ; Ren, Cong ; Liu, Tong ; Chen, Fanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8797ff2a9823cf47d3c8b07b996e316d47d1de0b513625b8fc341249a4d2bb783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon gasification</topic><topic>Carbon monoxide</topic><topic>Electricity</topic><topic>Gasification</topic><topic>Oxides</topic><topic>Solid oxide electrolysis cell</topic><topic>Syngas production</topic><topic>Synthetic fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Libin</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Fang, Shumin</creatorcontrib><creatorcontrib>Ren, Cong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chen, Fanglin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Libin</au><au>Wang, Yao</au><au>Fang, Shumin</au><au>Ren, Cong</au><au>Liu, Tong</au><au>Chen, Fanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis</atitle><jtitle>Applied energy</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>173</volume><spage>52</spage><epage>58</epage><pages>52-58</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>•A novel syngas production system is achieved by CG assisted co-electrolysis.•Electricity consumption is significantly reduced with carbon in the anode.•CG assisted co-electrolysis is demonstrated on LSGM-based SOECs. High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas for the storage of electrical energy harvested from renewable energy sources. However, a significant portion of electricity input is consumed to overcome a large oxygen potential gradient between the electrodes in conventional solid oxide electrolysis cells (SOECs). In this study, we present a novel and efficient syngas generator integrating carbon gasification and solid oxide co-electrolysis to improve the system efficiency. The feasibility of this new system is demonstrated in La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte-supported SOECs. Both thermodynamic calculation and experimental results show that the potential barrier for co-electrolysis can be reduced by about 1V and the electricity input can be saved by more than 90% upon integration of SOECs with carbon gasification. On the anode side, “CO shuttle” between the electrochemical reaction sites and solid carbon is realized through the Boudouard reaction (C+CO2=2CO). Simultaneous production of CO on the anode side and CO/H2 on the cathode side generates syngas that can serve as fuel for power generation or feedstock for chemical plants. The integration of carbon gasification and SOECs provides a potential pathway for efficient utilization of electricity, coal/biomass, and CO2 to store electrical energy, produce clean fuel, and achieve a carbon neutral sustainable energy supply.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2016.03.116</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2016-07, Vol.173, p.52-58
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_1825476707
source Elsevier ScienceDirect Journals
subjects Anodes
Carbon
Carbon dioxide
Carbon gasification
Carbon monoxide
Electricity
Gasification
Oxides
Solid oxide electrolysis cell
Syngas production
Synthetic fuels
title Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20syngas%20generation%20for%20electricity%20storage%20through%20carbon%20gasification%20assisted%20solid%20oxide%20co-electrolysis&rft.jtitle=Applied%20energy&rft.au=Lei,%20Libin&rft.date=2016-07-01&rft.volume=173&rft.spage=52&rft.epage=58&rft.pages=52-58&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2016.03.116&rft_dat=%3Cproquest_cross%3E1808702673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808702673&rft_id=info:pmid/&rft_els_id=S030626191630441X&rfr_iscdi=true