Multivariate upper semilinear copulas

In the problem setting of constructing an n-copula given its diagonal section and all of its (n−1)-dimensional marginals, we introduce a new class of symmetric n-copulas, which generalizes the well-known class of bivariate upper semilinear copulas. These new upper semilinear n-copulas are constructe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-09, Vol.360, p.289-300
Hauptverfasser: Arias-García, J.J., De Meyer, H., De Baets, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue
container_start_page 289
container_title Information sciences
container_volume 360
creator Arias-García, J.J.
De Meyer, H.
De Baets, B.
description In the problem setting of constructing an n-copula given its diagonal section and all of its (n−1)-dimensional marginals, we introduce a new class of symmetric n-copulas, which generalizes the well-known class of bivariate upper semilinear copulas. These new upper semilinear n-copulas are constructed by linear interpolation on segments connecting the main diagonal of the unit hypercube [0, 1]n to one of its upper faces. We focus on the case where the (n−1)-dimensional marginals are upper semilinear (n−1)-copulas themselves, in which case the n-copula is actually constructed given its diagonal section and the diagonal sections of its k-marginals (k∈{2,3,…,n−1}). We provide necessary and sufficient conditions on these diagonal sections that guarantee that the upper semilinear construction method yields an n-copula. Several examples are provided.
doi_str_mv 10.1016/j.ins.2016.04.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825476638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516302717</els_id><sourcerecordid>1825476638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a8b65939699053a89653b15e43b98dd42d52c1db58a271b7f311f3f565a3fe6a3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGxdkFgS7uzYscWEKgpIRSwwW45zkVylSbCTSrw9qcrMdDf836-7j7FbhBwB1cMuD13K-bzmUOTA9RlboC55prjBc7YA4JABl_KSXaW0A4CiVGrB7t6ndgwHF4MbaTUNA8VVon1oQ0curnw_TK1L1-yicW2im7-5ZF-b58_1a7b9eHlbP20zLwSMmdOVkkYYZQxI4bRRUlQoqRCV0XVd8Fpyj3UlteMlVmUjEBvRSCWdaEg5sWT3p94h9t8TpdHuQ_LUtq6jfkoWNZfHu4Weo3iK-tinFKmxQwx7F38sgj0qsTs7K7FHJRYKOyuZmccTQ_MPh0DRJh-o81SHSH60dR_-oX8BvHhoCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825476638</pqid></control><display><type>article</type><title>Multivariate upper semilinear copulas</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Arias-García, J.J. ; De Meyer, H. ; De Baets, B.</creator><creatorcontrib>Arias-García, J.J. ; De Meyer, H. ; De Baets, B.</creatorcontrib><description>In the problem setting of constructing an n-copula given its diagonal section and all of its (n−1)-dimensional marginals, we introduce a new class of symmetric n-copulas, which generalizes the well-known class of bivariate upper semilinear copulas. These new upper semilinear n-copulas are constructed by linear interpolation on segments connecting the main diagonal of the unit hypercube [0, 1]n to one of its upper faces. We focus on the case where the (n−1)-dimensional marginals are upper semilinear (n−1)-copulas themselves, in which case the n-copula is actually constructed given its diagonal section and the diagonal sections of its k-marginals (k∈{2,3,…,n−1}). We provide necessary and sufficient conditions on these diagonal sections that guarantee that the upper semilinear construction method yields an n-copula. Several examples are provided.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.04.028</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Construction ; Copula ; Diagonal function ; Diagonal section ; Hypercubes ; Interpolation ; Joining ; n-copula ; Segments ; Semilinear copula ; Symmetry</subject><ispartof>Information sciences, 2016-09, Vol.360, p.289-300</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a8b65939699053a89653b15e43b98dd42d52c1db58a271b7f311f3f565a3fe6a3</citedby><cites>FETCH-LOGICAL-c330t-a8b65939699053a89653b15e43b98dd42d52c1db58a271b7f311f3f565a3fe6a3</cites><orcidid>0000-0003-4139-9559 ; 0000-0002-3876-620X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2016.04.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Arias-García, J.J.</creatorcontrib><creatorcontrib>De Meyer, H.</creatorcontrib><creatorcontrib>De Baets, B.</creatorcontrib><title>Multivariate upper semilinear copulas</title><title>Information sciences</title><description>In the problem setting of constructing an n-copula given its diagonal section and all of its (n−1)-dimensional marginals, we introduce a new class of symmetric n-copulas, which generalizes the well-known class of bivariate upper semilinear copulas. These new upper semilinear n-copulas are constructed by linear interpolation on segments connecting the main diagonal of the unit hypercube [0, 1]n to one of its upper faces. We focus on the case where the (n−1)-dimensional marginals are upper semilinear (n−1)-copulas themselves, in which case the n-copula is actually constructed given its diagonal section and the diagonal sections of its k-marginals (k∈{2,3,…,n−1}). We provide necessary and sufficient conditions on these diagonal sections that guarantee that the upper semilinear construction method yields an n-copula. Several examples are provided.</description><subject>Construction</subject><subject>Copula</subject><subject>Diagonal function</subject><subject>Diagonal section</subject><subject>Hypercubes</subject><subject>Interpolation</subject><subject>Joining</subject><subject>n-copula</subject><subject>Segments</subject><subject>Semilinear copula</subject><subject>Symmetry</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGxdkFgS7uzYscWEKgpIRSwwW45zkVylSbCTSrw9qcrMdDf836-7j7FbhBwB1cMuD13K-bzmUOTA9RlboC55prjBc7YA4JABl_KSXaW0A4CiVGrB7t6ndgwHF4MbaTUNA8VVon1oQ0curnw_TK1L1-yicW2im7-5ZF-b58_1a7b9eHlbP20zLwSMmdOVkkYYZQxI4bRRUlQoqRCV0XVd8Fpyj3UlteMlVmUjEBvRSCWdaEg5sWT3p94h9t8TpdHuQ_LUtq6jfkoWNZfHu4Weo3iK-tinFKmxQwx7F38sgj0qsTs7K7FHJRYKOyuZmccTQ_MPh0DRJh-o81SHSH60dR_-oX8BvHhoCA</recordid><startdate>20160910</startdate><enddate>20160910</enddate><creator>Arias-García, J.J.</creator><creator>De Meyer, H.</creator><creator>De Baets, B.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4139-9559</orcidid><orcidid>https://orcid.org/0000-0002-3876-620X</orcidid></search><sort><creationdate>20160910</creationdate><title>Multivariate upper semilinear copulas</title><author>Arias-García, J.J. ; De Meyer, H. ; De Baets, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a8b65939699053a89653b15e43b98dd42d52c1db58a271b7f311f3f565a3fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Construction</topic><topic>Copula</topic><topic>Diagonal function</topic><topic>Diagonal section</topic><topic>Hypercubes</topic><topic>Interpolation</topic><topic>Joining</topic><topic>n-copula</topic><topic>Segments</topic><topic>Semilinear copula</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-García, J.J.</creatorcontrib><creatorcontrib>De Meyer, H.</creatorcontrib><creatorcontrib>De Baets, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-García, J.J.</au><au>De Meyer, H.</au><au>De Baets, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate upper semilinear copulas</atitle><jtitle>Information sciences</jtitle><date>2016-09-10</date><risdate>2016</risdate><volume>360</volume><spage>289</spage><epage>300</epage><pages>289-300</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In the problem setting of constructing an n-copula given its diagonal section and all of its (n−1)-dimensional marginals, we introduce a new class of symmetric n-copulas, which generalizes the well-known class of bivariate upper semilinear copulas. These new upper semilinear n-copulas are constructed by linear interpolation on segments connecting the main diagonal of the unit hypercube [0, 1]n to one of its upper faces. We focus on the case where the (n−1)-dimensional marginals are upper semilinear (n−1)-copulas themselves, in which case the n-copula is actually constructed given its diagonal section and the diagonal sections of its k-marginals (k∈{2,3,…,n−1}). We provide necessary and sufficient conditions on these diagonal sections that guarantee that the upper semilinear construction method yields an n-copula. Several examples are provided.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.04.028</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4139-9559</orcidid><orcidid>https://orcid.org/0000-0002-3876-620X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-09, Vol.360, p.289-300
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1825476638
source ScienceDirect Journals (5 years ago - present)
subjects Construction
Copula
Diagonal function
Diagonal section
Hypercubes
Interpolation
Joining
n-copula
Segments
Semilinear copula
Symmetry
title Multivariate upper semilinear copulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20upper%20semilinear%20copulas&rft.jtitle=Information%20sciences&rft.au=Arias-Garc%C3%ADa,%20J.J.&rft.date=2016-09-10&rft.volume=360&rft.spage=289&rft.epage=300&rft.pages=289-300&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.04.028&rft_dat=%3Cproquest_cross%3E1825476638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825476638&rft_id=info:pmid/&rft_els_id=S0020025516302717&rfr_iscdi=true