Attraction and Lyapunov stability for control systems on vector bundles
Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotica...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2016-06, Vol.92, p.28-33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 28 |
container_title | Systems & control letters |
container_volume | 92 |
creator | Braga Barros, Carlos J. Rocha, Victor H.L. |
description | Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B. |
doi_str_mv | 10.1016/j.sysconle.2016.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825476419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691116000359</els_id><sourcerecordid>1825476419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_QfboZdckm012b5aiVSh40XPIJrOQkm5qki3svzel9uxpGOa9N7wPoUeCK4IJf95VcY7ajw4qmvcK0wpjfoUWpBW0FF3Dr9EiH0TJO0Ju0V2MO4wxxXW9QJtVSkHpZP1YqNEU21kdptEfi5hUb51NczH4UOT4FLwr8qcE-1hk9RF0ypd-Go2DeI9uBuUiPPzNJfp-e_1av5fbz83HerUtdc2aVArRaKMG03BhDKHKdJ1hvVJDS5QxnHFmtIaupYKKpoHaQN8qQRnnmpFa6HqJns65h-B_JohJ7m3U4JwawU9RkpY2THBGuizlZ6kOPsYAgzwEu1dhlgTLEzm5kxdy8kROYiozuWx8ORshFzlaCDJqC6MGY0MuLY23_0X8AtZrfLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825476419</pqid></control><display><type>article</type><title>Attraction and Lyapunov stability for control systems on vector bundles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Braga Barros, Carlos J. ; Rocha, Victor H.L.</creator><creatorcontrib>Braga Barros, Carlos J. ; Rocha, Victor H.L.</creatorcontrib><description>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2016.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Attraction ; Bundles ; Control systems ; Equivalence ; Lyapunov stability ; Mathematical analysis ; Stability ; Vector bundles ; Vectors (mathematics)</subject><ispartof>Systems & control letters, 2016-06, Vol.92, p.28-33</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</citedby><cites>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2016.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Braga Barros, Carlos J.</creatorcontrib><creatorcontrib>Rocha, Victor H.L.</creatorcontrib><title>Attraction and Lyapunov stability for control systems on vector bundles</title><title>Systems & control letters</title><description>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</description><subject>Asymptotic properties</subject><subject>Attraction</subject><subject>Bundles</subject><subject>Control systems</subject><subject>Equivalence</subject><subject>Lyapunov stability</subject><subject>Mathematical analysis</subject><subject>Stability</subject><subject>Vector bundles</subject><subject>Vectors (mathematics)</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_QfboZdckm012b5aiVSh40XPIJrOQkm5qki3svzel9uxpGOa9N7wPoUeCK4IJf95VcY7ajw4qmvcK0wpjfoUWpBW0FF3Dr9EiH0TJO0Ju0V2MO4wxxXW9QJtVSkHpZP1YqNEU21kdptEfi5hUb51NczH4UOT4FLwr8qcE-1hk9RF0ypd-Go2DeI9uBuUiPPzNJfp-e_1av5fbz83HerUtdc2aVArRaKMG03BhDKHKdJ1hvVJDS5QxnHFmtIaupYKKpoHaQN8qQRnnmpFa6HqJns65h-B_JohJ7m3U4JwawU9RkpY2THBGuizlZ6kOPsYAgzwEu1dhlgTLEzm5kxdy8kROYiozuWx8ORshFzlaCDJqC6MGY0MuLY23_0X8AtZrfLE</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Braga Barros, Carlos J.</creator><creator>Rocha, Victor H.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Attraction and Lyapunov stability for control systems on vector bundles</title><author>Braga Barros, Carlos J. ; Rocha, Victor H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Attraction</topic><topic>Bundles</topic><topic>Control systems</topic><topic>Equivalence</topic><topic>Lyapunov stability</topic><topic>Mathematical analysis</topic><topic>Stability</topic><topic>Vector bundles</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braga Barros, Carlos J.</creatorcontrib><creatorcontrib>Rocha, Victor H.L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Systems & control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braga Barros, Carlos J.</au><au>Rocha, Victor H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attraction and Lyapunov stability for control systems on vector bundles</atitle><jtitle>Systems & control letters</jtitle><date>2016-06</date><risdate>2016</risdate><volume>92</volume><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2016.02.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6911 |
ispartof | Systems & control letters, 2016-06, Vol.92, p.28-33 |
issn | 0167-6911 1872-7956 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825476419 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Asymptotic properties Attraction Bundles Control systems Equivalence Lyapunov stability Mathematical analysis Stability Vector bundles Vectors (mathematics) |
title | Attraction and Lyapunov stability for control systems on vector bundles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attraction%20and%20Lyapunov%20stability%20for%20control%20systems%20on%20vector%20bundles&rft.jtitle=Systems%20&%20control%20letters&rft.au=Braga%20Barros,%20Carlos%20J.&rft.date=2016-06&rft.volume=92&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2016.02.006&rft_dat=%3Cproquest_cross%3E1825476419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825476419&rft_id=info:pmid/&rft_els_id=S0167691116000359&rfr_iscdi=true |