Attraction and Lyapunov stability for control systems on vector bundles

Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2016-06, Vol.92, p.28-33
Hauptverfasser: Braga Barros, Carlos J., Rocha, Victor H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 28
container_title Systems & control letters
container_volume 92
creator Braga Barros, Carlos J.
Rocha, Victor H.L.
description Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.
doi_str_mv 10.1016/j.sysconle.2016.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825476419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691116000359</els_id><sourcerecordid>1825476419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_QfboZdckm012b5aiVSh40XPIJrOQkm5qki3svzel9uxpGOa9N7wPoUeCK4IJf95VcY7ajw4qmvcK0wpjfoUWpBW0FF3Dr9EiH0TJO0Ju0V2MO4wxxXW9QJtVSkHpZP1YqNEU21kdptEfi5hUb51NczH4UOT4FLwr8qcE-1hk9RF0ypd-Go2DeI9uBuUiPPzNJfp-e_1av5fbz83HerUtdc2aVArRaKMG03BhDKHKdJ1hvVJDS5QxnHFmtIaupYKKpoHaQN8qQRnnmpFa6HqJns65h-B_JohJ7m3U4JwawU9RkpY2THBGuizlZ6kOPsYAgzwEu1dhlgTLEzm5kxdy8kROYiozuWx8ORshFzlaCDJqC6MGY0MuLY23_0X8AtZrfLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825476419</pqid></control><display><type>article</type><title>Attraction and Lyapunov stability for control systems on vector bundles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Braga Barros, Carlos J. ; Rocha, Victor H.L.</creator><creatorcontrib>Braga Barros, Carlos J. ; Rocha, Victor H.L.</creatorcontrib><description>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2016.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Attraction ; Bundles ; Control systems ; Equivalence ; Lyapunov stability ; Mathematical analysis ; Stability ; Vector bundles ; Vectors (mathematics)</subject><ispartof>Systems &amp; control letters, 2016-06, Vol.92, p.28-33</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</citedby><cites>FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2016.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Braga Barros, Carlos J.</creatorcontrib><creatorcontrib>Rocha, Victor H.L.</creatorcontrib><title>Attraction and Lyapunov stability for control systems on vector bundles</title><title>Systems &amp; control letters</title><description>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</description><subject>Asymptotic properties</subject><subject>Attraction</subject><subject>Bundles</subject><subject>Control systems</subject><subject>Equivalence</subject><subject>Lyapunov stability</subject><subject>Mathematical analysis</subject><subject>Stability</subject><subject>Vector bundles</subject><subject>Vectors (mathematics)</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_QfboZdckm012b5aiVSh40XPIJrOQkm5qki3svzel9uxpGOa9N7wPoUeCK4IJf95VcY7ajw4qmvcK0wpjfoUWpBW0FF3Dr9EiH0TJO0Ju0V2MO4wxxXW9QJtVSkHpZP1YqNEU21kdptEfi5hUb51NczH4UOT4FLwr8qcE-1hk9RF0ypd-Go2DeI9uBuUiPPzNJfp-e_1av5fbz83HerUtdc2aVArRaKMG03BhDKHKdJ1hvVJDS5QxnHFmtIaupYKKpoHaQN8qQRnnmpFa6HqJns65h-B_JohJ7m3U4JwawU9RkpY2THBGuizlZ6kOPsYAgzwEu1dhlgTLEzm5kxdy8kROYiozuWx8ORshFzlaCDJqC6MGY0MuLY23_0X8AtZrfLE</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Braga Barros, Carlos J.</creator><creator>Rocha, Victor H.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Attraction and Lyapunov stability for control systems on vector bundles</title><author>Braga Barros, Carlos J. ; Rocha, Victor H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-775cdafd567dd12ad99d4baaf81add6464dcce98272755e3deb8a72466c4137c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Attraction</topic><topic>Bundles</topic><topic>Control systems</topic><topic>Equivalence</topic><topic>Lyapunov stability</topic><topic>Mathematical analysis</topic><topic>Stability</topic><topic>Vector bundles</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braga Barros, Carlos J.</creatorcontrib><creatorcontrib>Rocha, Victor H.L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braga Barros, Carlos J.</au><au>Rocha, Victor H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attraction and Lyapunov stability for control systems on vector bundles</atitle><jtitle>Systems &amp; control letters</jtitle><date>2016-06</date><risdate>2016</risdate><volume>92</volume><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>Let π:E→B be a finite-dimensional vector bundle whose base space is compact. In this paper, we study attraction and Lyapunov stability for control systems on E. We prove that, under certain conditions, the concepts of Conley attractor, uniform attractor, attractor, exponential attractor, asymptotically stable set and stable set are equivalent for the zero section of π:E→B.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2016.02.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2016-06, Vol.92, p.28-33
issn 0167-6911
1872-7956
language eng
recordid cdi_proquest_miscellaneous_1825476419
source ScienceDirect Journals (5 years ago - present)
subjects Asymptotic properties
Attraction
Bundles
Control systems
Equivalence
Lyapunov stability
Mathematical analysis
Stability
Vector bundles
Vectors (mathematics)
title Attraction and Lyapunov stability for control systems on vector bundles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attraction%20and%20Lyapunov%20stability%20for%20control%20systems%20on%20vector%20bundles&rft.jtitle=Systems%20&%20control%20letters&rft.au=Braga%20Barros,%20Carlos%20J.&rft.date=2016-06&rft.volume=92&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2016.02.006&rft_dat=%3Cproquest_cross%3E1825476419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825476419&rft_id=info:pmid/&rft_els_id=S0167691116000359&rfr_iscdi=true