Holographic planar lightwave circuit for on-chip spectroscopy

Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2014-09, Vol.3 (9), p.e203-e203
Hauptverfasser: Calafiore, Giuseppe, Koshelev, Alexander, Dhuey, Scott, Goltsov, Alexander, Sasorov, Pavel, Babin, Sergey, Yankov, Vladimir, Cabrini, Stefano, Peroz, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e203
container_issue 9
container_start_page e203
container_title Light, science & applications
container_volume 3
creator Calafiore, Giuseppe
Koshelev, Alexander
Dhuey, Scott
Goltsov, Alexander
Sasorov, Pavel
Babin, Sergey
Yankov, Vladimir
Cabrini, Stefano
Peroz, Christophe
description Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm 2 , the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. Spectroscopy: on-chip integration An on-chip spectrometer based on digital planar holograms offers a miniature alternative to conventional devices. Developed by three research team in California, USA, the spectrometer uses two computer-designed holograms as high-resolution gratings for separating different wavelengths of light in the spectral bands of 630–694 nm and 766–850 nm. The holograms are made by electron beam lithography and reactive ion etching of a Si/SiO 2 /Si 3 N 4 substrate. The result is a semiconductor spectrometer chip that occupies a footprint of less than 2 cm 2 and boasts a resolution of 0.15 nm and a bandwidth of 148 nm across the red and near-infrared regions. The researchers say that the device’s performance is comparable to much larger conventional instruments and will be a useful component for ‘lab-on-a-chip’ applications such as sensing. They also believe that it should be possible to make even smaller versions with higher performance in the future.
doi_str_mv 10.1038/lsa.2014.84
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825473554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825473554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-4ea380c7062e9d06e5f64f82f794a32fd4554184d49cde28c4cd15503f9cc75c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsNSe_AMBL4Km7md2c_AgRa1Q8KLnZZnstilpNu4mSv-9W-KhiDiXmcPDyzsPQpcEzwlm6q6JZk4x4XPFT9CEYi5zKZg6PbrP0SzGLU5TcoKVnKD7pW_8OphuU0PWNaY1IWvq9ab_Mp82gzrAUPeZ8yHzbQ6bustiZ6EPPoLv9hfozJkm2tnPnqL3p8e3xTJfvT6_LB5WOfCC9jm3hikMEhfUlhUurHAFd4o6WXLDqKu4EJwoXvESKksVcKiIEJi5EkAKYFN0PeZ2wX8MNvZ6V0ewTepr_RA1UVRwyVJKQq9-oVs_hDa101QlO4QV5b8UkSXjVBZYJupmpCD9G4N1ugv1zoS9JlgfnOvkXB-ca3XIvB3pmKh2bcNR5h_4N9PagQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793427607</pqid></control><display><type>article</type><title>Holographic planar lightwave circuit for on-chip spectroscopy</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Calafiore, Giuseppe ; Koshelev, Alexander ; Dhuey, Scott ; Goltsov, Alexander ; Sasorov, Pavel ; Babin, Sergey ; Yankov, Vladimir ; Cabrini, Stefano ; Peroz, Christophe</creator><creatorcontrib>Calafiore, Giuseppe ; Koshelev, Alexander ; Dhuey, Scott ; Goltsov, Alexander ; Sasorov, Pavel ; Babin, Sergey ; Yankov, Vladimir ; Cabrini, Stefano ; Peroz, Christophe</creatorcontrib><description>Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm 2 , the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. Spectroscopy: on-chip integration An on-chip spectrometer based on digital planar holograms offers a miniature alternative to conventional devices. Developed by three research team in California, USA, the spectrometer uses two computer-designed holograms as high-resolution gratings for separating different wavelengths of light in the spectral bands of 630–694 nm and 766–850 nm. The holograms are made by electron beam lithography and reactive ion etching of a Si/SiO 2 /Si 3 N 4 substrate. The result is a semiconductor spectrometer chip that occupies a footprint of less than 2 cm 2 and boasts a resolution of 0.15 nm and a bandwidth of 148 nm across the red and near-infrared regions. The researchers say that the device’s performance is comparable to much larger conventional instruments and will be a useful component for ‘lab-on-a-chip’ applications such as sensing. They also believe that it should be possible to make even smaller versions with higher performance in the future.</description><identifier>ISSN: 2047-7538</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/lsa.2014.84</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1107/527 ; Devices ; Digital ; Etching ; Holograms ; Holography ; Lab-on-a-chip ; Lasers ; Lithography ; Microwaves ; Optical and Electronic Materials ; Optical Devices ; Optics ; original-article ; Photonics ; Physics ; RF and Optical Engineering ; Semiconductors ; Silicon dioxide ; Silicon nitride ; Spectra ; Spectrometers ; Spectroscopy ; Spectrum analysis</subject><ispartof>Light, science &amp; applications, 2014-09, Vol.3 (9), p.e203-e203</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>The Author(s) 2014. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-4ea380c7062e9d06e5f64f82f794a32fd4554184d49cde28c4cd15503f9cc75c3</citedby><cites>FETCH-LOGICAL-c462t-4ea380c7062e9d06e5f64f82f794a32fd4554184d49cde28c4cd15503f9cc75c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/lsa.2014.84$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/lsa.2014.84$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Calafiore, Giuseppe</creatorcontrib><creatorcontrib>Koshelev, Alexander</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Goltsov, Alexander</creatorcontrib><creatorcontrib>Sasorov, Pavel</creatorcontrib><creatorcontrib>Babin, Sergey</creatorcontrib><creatorcontrib>Yankov, Vladimir</creatorcontrib><creatorcontrib>Cabrini, Stefano</creatorcontrib><creatorcontrib>Peroz, Christophe</creatorcontrib><title>Holographic planar lightwave circuit for on-chip spectroscopy</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><description>Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm 2 , the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. Spectroscopy: on-chip integration An on-chip spectrometer based on digital planar holograms offers a miniature alternative to conventional devices. Developed by three research team in California, USA, the spectrometer uses two computer-designed holograms as high-resolution gratings for separating different wavelengths of light in the spectral bands of 630–694 nm and 766–850 nm. The holograms are made by electron beam lithography and reactive ion etching of a Si/SiO 2 /Si 3 N 4 substrate. The result is a semiconductor spectrometer chip that occupies a footprint of less than 2 cm 2 and boasts a resolution of 0.15 nm and a bandwidth of 148 nm across the red and near-infrared regions. The researchers say that the device’s performance is comparable to much larger conventional instruments and will be a useful component for ‘lab-on-a-chip’ applications such as sensing. They also believe that it should be possible to make even smaller versions with higher performance in the future.</description><subject>639/624/1075/1079</subject><subject>639/624/1107/527</subject><subject>Devices</subject><subject>Digital</subject><subject>Etching</subject><subject>Holograms</subject><subject>Holography</subject><subject>Lab-on-a-chip</subject><subject>Lasers</subject><subject>Lithography</subject><subject>Microwaves</subject><subject>Optical and Electronic Materials</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>original-article</subject><subject>Photonics</subject><subject>Physics</subject><subject>RF and Optical Engineering</subject><subject>Semiconductors</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>Spectra</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>2047-7538</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRsNSe_AMBL4Km7md2c_AgRa1Q8KLnZZnstilpNu4mSv-9W-KhiDiXmcPDyzsPQpcEzwlm6q6JZk4x4XPFT9CEYi5zKZg6PbrP0SzGLU5TcoKVnKD7pW_8OphuU0PWNaY1IWvq9ab_Mp82gzrAUPeZ8yHzbQ6bustiZ6EPPoLv9hfozJkm2tnPnqL3p8e3xTJfvT6_LB5WOfCC9jm3hikMEhfUlhUurHAFd4o6WXLDqKu4EJwoXvESKksVcKiIEJi5EkAKYFN0PeZ2wX8MNvZ6V0ewTepr_RA1UVRwyVJKQq9-oVs_hDa101QlO4QV5b8UkSXjVBZYJupmpCD9G4N1ugv1zoS9JlgfnOvkXB-ca3XIvB3pmKh2bcNR5h_4N9PagQo</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Calafiore, Giuseppe</creator><creator>Koshelev, Alexander</creator><creator>Dhuey, Scott</creator><creator>Goltsov, Alexander</creator><creator>Sasorov, Pavel</creator><creator>Babin, Sergey</creator><creator>Yankov, Vladimir</creator><creator>Cabrini, Stefano</creator><creator>Peroz, Christophe</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Holographic planar lightwave circuit for on-chip spectroscopy</title><author>Calafiore, Giuseppe ; Koshelev, Alexander ; Dhuey, Scott ; Goltsov, Alexander ; Sasorov, Pavel ; Babin, Sergey ; Yankov, Vladimir ; Cabrini, Stefano ; Peroz, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-4ea380c7062e9d06e5f64f82f794a32fd4554184d49cde28c4cd15503f9cc75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1107/527</topic><topic>Devices</topic><topic>Digital</topic><topic>Etching</topic><topic>Holograms</topic><topic>Holography</topic><topic>Lab-on-a-chip</topic><topic>Lasers</topic><topic>Lithography</topic><topic>Microwaves</topic><topic>Optical and Electronic Materials</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>original-article</topic><topic>Photonics</topic><topic>Physics</topic><topic>RF and Optical Engineering</topic><topic>Semiconductors</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>Spectra</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calafiore, Giuseppe</creatorcontrib><creatorcontrib>Koshelev, Alexander</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Goltsov, Alexander</creatorcontrib><creatorcontrib>Sasorov, Pavel</creatorcontrib><creatorcontrib>Babin, Sergey</creatorcontrib><creatorcontrib>Yankov, Vladimir</creatorcontrib><creatorcontrib>Cabrini, Stefano</creatorcontrib><creatorcontrib>Peroz, Christophe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calafiore, Giuseppe</au><au>Koshelev, Alexander</au><au>Dhuey, Scott</au><au>Goltsov, Alexander</au><au>Sasorov, Pavel</au><au>Babin, Sergey</au><au>Yankov, Vladimir</au><au>Cabrini, Stefano</au><au>Peroz, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic planar lightwave circuit for on-chip spectroscopy</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>3</volume><issue>9</issue><spage>e203</spage><epage>e203</epage><pages>e203-e203</pages><issn>2047-7538</issn><eissn>2047-7538</eissn><abstract>Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm 2 , the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. Spectroscopy: on-chip integration An on-chip spectrometer based on digital planar holograms offers a miniature alternative to conventional devices. Developed by three research team in California, USA, the spectrometer uses two computer-designed holograms as high-resolution gratings for separating different wavelengths of light in the spectral bands of 630–694 nm and 766–850 nm. The holograms are made by electron beam lithography and reactive ion etching of a Si/SiO 2 /Si 3 N 4 substrate. The result is a semiconductor spectrometer chip that occupies a footprint of less than 2 cm 2 and boasts a resolution of 0.15 nm and a bandwidth of 148 nm across the red and near-infrared regions. The researchers say that the device’s performance is comparable to much larger conventional instruments and will be a useful component for ‘lab-on-a-chip’ applications such as sensing. They also believe that it should be possible to make even smaller versions with higher performance in the future.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/lsa.2014.84</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2014-09, Vol.3 (9), p.e203-e203
issn 2047-7538
2047-7538
language eng
recordid cdi_proquest_miscellaneous_1825473554
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/624/1075/1079
639/624/1107/527
Devices
Digital
Etching
Holograms
Holography
Lab-on-a-chip
Lasers
Lithography
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
original-article
Photonics
Physics
RF and Optical Engineering
Semiconductors
Silicon dioxide
Silicon nitride
Spectra
Spectrometers
Spectroscopy
Spectrum analysis
title Holographic planar lightwave circuit for on-chip spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20planar%20lightwave%20circuit%20for%20on-chip%20spectroscopy&rft.jtitle=Light,%20science%20&%20applications&rft.au=Calafiore,%20Giuseppe&rft.date=2014-09-01&rft.volume=3&rft.issue=9&rft.spage=e203&rft.epage=e203&rft.pages=e203-e203&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/lsa.2014.84&rft_dat=%3Cproquest_cross%3E1825473554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793427607&rft_id=info:pmid/&rfr_iscdi=true