Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software

A computational approach is presented that enables commercial Computational Fluid Dynamics (CFD) codes to detect Hopf bifurcations and with necessary adjustments, compute the frequency and amplitude of the periodic orbits that arise from the Hopf point. The proposed computational framework, which co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2016-08, Vol.150, p.26-34
Hauptverfasser: Koronaki, E.D., Gakis, G.P., Cheimarios, N., Boudouvis, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 26
container_title Chemical engineering science
container_volume 150
creator Koronaki, E.D.
Gakis, G.P.
Cheimarios, N.
Boudouvis, A.G.
description A computational approach is presented that enables commercial Computational Fluid Dynamics (CFD) codes to detect Hopf bifurcations and with necessary adjustments, compute the frequency and amplitude of the periodic orbits that arise from the Hopf point. The proposed computational framework, which combines a homemade Matlab code with Ansys/Fluent, is an extension of a previously presented methodology for the efficient tracing of solution branches that contain turning points. The need for the special attention to periodic orbits springs from recently published results that indicate that time-periodic states occur in industrial-scale Chemical Vapor Deposition (CVD) reactors. Nevertheless the method presented here is not limited to deposition processes; in fact it treats the CFD process model as a “black box” and requires no alteration of the commercial software. To prove the effectiveness of the computational framework, it is implemented here on the benchmark case of laminar flow around a cylinder, where Hopf bifurcations have been identified via eigenvalue analysis. Once the method is validated, it is implemented on a rotating-disk commercial CVD reactor model in the region of parameter space where Hopf points are observed. In both the benchmark and the industrial-scale CVD cases, stable and unstable, stationary and periodic states are computed for the same parameter values. •Solution branch tracing and stability analysis performed with Fluent.•Benchmark is the 2D flow around a cylinder with known Hopf point.•Application to a CVD reactor model reveals transition to periodic states.•Solution branches of stable and unstable stationary states are computed.•Period and amplitude of periodic states is computed over a range of parameters.
doi_str_mv 10.1016/j.ces.2016.04.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825473241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250916302147</els_id><sourcerecordid>1825473241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-bd079e998b3fb01cd4505438a966e09d6082e01c817c1dc8595d926cd213701a3</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtFCQ2AQ-gJuPXGZpj-dlcYo2D5AicYGz5bV7oFee8WB7k-wtn44nyxmppe6qrmqpi7GPArYCRPf5sLWYtnUZt9CUkm_YRgy9rJoG2gu2AQBV1S2od-wypUOBfS9gw15ux5Es4Zx5jsbS_Iub2fGUzZ485VNBxp8SJR5GPh19psXjus4UZhNPr-oFIwVH9pXHxJ8o_-b4vPhAZ-FqtmGaMFoynu_ubngKY34yEd-zt6PxCT_861fs593tj93X6uH7_bfd9UNlZdfnau-gV6jUsJfjHoR1TQttIwejug5BuQ6GGgs_iN4KZ4dWtU7VnXW1kD0II6_Yp_PdJYY_R0xZT5Qsem9mDMekxVC3TS_rRhSpOEttDClFHPUSaSrPagF6TVsfdElbr2lraErJ4vly9mD54ZEw6rSmatFRRJu1C_Qf919B0YnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825473241</pqid></control><display><type>article</type><title>Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software</title><source>Access via ScienceDirect (Elsevier)</source><creator>Koronaki, E.D. ; Gakis, G.P. ; Cheimarios, N. ; Boudouvis, A.G.</creator><creatorcontrib>Koronaki, E.D. ; Gakis, G.P. ; Cheimarios, N. ; Boudouvis, A.G.</creatorcontrib><description>A computational approach is presented that enables commercial Computational Fluid Dynamics (CFD) codes to detect Hopf bifurcations and with necessary adjustments, compute the frequency and amplitude of the periodic orbits that arise from the Hopf point. The proposed computational framework, which combines a homemade Matlab code with Ansys/Fluent, is an extension of a previously presented methodology for the efficient tracing of solution branches that contain turning points. The need for the special attention to periodic orbits springs from recently published results that indicate that time-periodic states occur in industrial-scale Chemical Vapor Deposition (CVD) reactors. Nevertheless the method presented here is not limited to deposition processes; in fact it treats the CFD process model as a “black box” and requires no alteration of the commercial software. To prove the effectiveness of the computational framework, it is implemented here on the benchmark case of laminar flow around a cylinder, where Hopf bifurcations have been identified via eigenvalue analysis. Once the method is validated, it is implemented on a rotating-disk commercial CVD reactor model in the region of parameter space where Hopf points are observed. In both the benchmark and the industrial-scale CVD cases, stable and unstable, stationary and periodic states are computed for the same parameter values. •Solution branch tracing and stability analysis performed with Fluent.•Benchmark is the 2D flow around a cylinder with known Hopf point.•Application to a CVD reactor model reveals transition to periodic states.•Solution branches of stable and unstable stationary states are computed.•Period and amplitude of periodic states is computed over a range of parameters.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2016.04.043</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>CFD software ; Chemical vapor deposition ; Computation ; Computational fluid dynamics ; Computer programs ; Cylinders ; Hopf bifurcation ; Mathematical models ; Matlab ; Multiple solutions ; Periodic states ; Software</subject><ispartof>Chemical engineering science, 2016-08, Vol.150, p.26-34</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-bd079e998b3fb01cd4505438a966e09d6082e01c817c1dc8595d926cd213701a3</citedby><cites>FETCH-LOGICAL-c367t-bd079e998b3fb01cd4505438a966e09d6082e01c817c1dc8595d926cd213701a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2016.04.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Koronaki, E.D.</creatorcontrib><creatorcontrib>Gakis, G.P.</creatorcontrib><creatorcontrib>Cheimarios, N.</creatorcontrib><creatorcontrib>Boudouvis, A.G.</creatorcontrib><title>Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software</title><title>Chemical engineering science</title><description>A computational approach is presented that enables commercial Computational Fluid Dynamics (CFD) codes to detect Hopf bifurcations and with necessary adjustments, compute the frequency and amplitude of the periodic orbits that arise from the Hopf point. The proposed computational framework, which combines a homemade Matlab code with Ansys/Fluent, is an extension of a previously presented methodology for the efficient tracing of solution branches that contain turning points. The need for the special attention to periodic orbits springs from recently published results that indicate that time-periodic states occur in industrial-scale Chemical Vapor Deposition (CVD) reactors. Nevertheless the method presented here is not limited to deposition processes; in fact it treats the CFD process model as a “black box” and requires no alteration of the commercial software. To prove the effectiveness of the computational framework, it is implemented here on the benchmark case of laminar flow around a cylinder, where Hopf bifurcations have been identified via eigenvalue analysis. Once the method is validated, it is implemented on a rotating-disk commercial CVD reactor model in the region of parameter space where Hopf points are observed. In both the benchmark and the industrial-scale CVD cases, stable and unstable, stationary and periodic states are computed for the same parameter values. •Solution branch tracing and stability analysis performed with Fluent.•Benchmark is the 2D flow around a cylinder with known Hopf point.•Application to a CVD reactor model reveals transition to periodic states.•Solution branches of stable and unstable stationary states are computed.•Period and amplitude of periodic states is computed over a range of parameters.</description><subject>CFD software</subject><subject>Chemical vapor deposition</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer programs</subject><subject>Cylinders</subject><subject>Hopf bifurcation</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Multiple solutions</subject><subject>Periodic states</subject><subject>Software</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtFCQ2AQ-gJuPXGZpj-dlcYo2D5AicYGz5bV7oFee8WB7k-wtn44nyxmppe6qrmqpi7GPArYCRPf5sLWYtnUZt9CUkm_YRgy9rJoG2gu2AQBV1S2od-wypUOBfS9gw15ux5Es4Zx5jsbS_Iub2fGUzZ485VNBxp8SJR5GPh19psXjus4UZhNPr-oFIwVH9pXHxJ8o_-b4vPhAZ-FqtmGaMFoynu_ubngKY34yEd-zt6PxCT_861fs593tj93X6uH7_bfd9UNlZdfnau-gV6jUsJfjHoR1TQttIwejug5BuQ6GGgs_iN4KZ4dWtU7VnXW1kD0II6_Yp_PdJYY_R0xZT5Qsem9mDMekxVC3TS_rRhSpOEttDClFHPUSaSrPagF6TVsfdElbr2lraErJ4vly9mD54ZEw6rSmatFRRJu1C_Qf919B0YnU</recordid><startdate>20160821</startdate><enddate>20160821</enddate><creator>Koronaki, E.D.</creator><creator>Gakis, G.P.</creator><creator>Cheimarios, N.</creator><creator>Boudouvis, A.G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160821</creationdate><title>Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software</title><author>Koronaki, E.D. ; Gakis, G.P. ; Cheimarios, N. ; Boudouvis, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-bd079e998b3fb01cd4505438a966e09d6082e01c817c1dc8595d926cd213701a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CFD software</topic><topic>Chemical vapor deposition</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer programs</topic><topic>Cylinders</topic><topic>Hopf bifurcation</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Multiple solutions</topic><topic>Periodic states</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koronaki, E.D.</creatorcontrib><creatorcontrib>Gakis, G.P.</creatorcontrib><creatorcontrib>Cheimarios, N.</creatorcontrib><creatorcontrib>Boudouvis, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koronaki, E.D.</au><au>Gakis, G.P.</au><au>Cheimarios, N.</au><au>Boudouvis, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software</atitle><jtitle>Chemical engineering science</jtitle><date>2016-08-21</date><risdate>2016</risdate><volume>150</volume><spage>26</spage><epage>34</epage><pages>26-34</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>A computational approach is presented that enables commercial Computational Fluid Dynamics (CFD) codes to detect Hopf bifurcations and with necessary adjustments, compute the frequency and amplitude of the periodic orbits that arise from the Hopf point. The proposed computational framework, which combines a homemade Matlab code with Ansys/Fluent, is an extension of a previously presented methodology for the efficient tracing of solution branches that contain turning points. The need for the special attention to periodic orbits springs from recently published results that indicate that time-periodic states occur in industrial-scale Chemical Vapor Deposition (CVD) reactors. Nevertheless the method presented here is not limited to deposition processes; in fact it treats the CFD process model as a “black box” and requires no alteration of the commercial software. To prove the effectiveness of the computational framework, it is implemented here on the benchmark case of laminar flow around a cylinder, where Hopf bifurcations have been identified via eigenvalue analysis. Once the method is validated, it is implemented on a rotating-disk commercial CVD reactor model in the region of parameter space where Hopf points are observed. In both the benchmark and the industrial-scale CVD cases, stable and unstable, stationary and periodic states are computed for the same parameter values. •Solution branch tracing and stability analysis performed with Fluent.•Benchmark is the 2D flow around a cylinder with known Hopf point.•Application to a CVD reactor model reveals transition to periodic states.•Solution branches of stable and unstable stationary states are computed.•Period and amplitude of periodic states is computed over a range of parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2016.04.043</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2016-08, Vol.150, p.26-34
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_1825473241
source Access via ScienceDirect (Elsevier)
subjects CFD software
Chemical vapor deposition
Computation
Computational fluid dynamics
Computer programs
Cylinders
Hopf bifurcation
Mathematical models
Matlab
Multiple solutions
Periodic states
Software
title Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20tracing%20and%20stability%20analysis%20of%20multiple%20stationary%20and%20periodic%20states%20with%20exploitation%20of%20commercial%20CFD%20software&rft.jtitle=Chemical%20engineering%20science&rft.au=Koronaki,%20E.D.&rft.date=2016-08-21&rft.volume=150&rft.spage=26&rft.epage=34&rft.pages=26-34&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2016.04.043&rft_dat=%3Cproquest_cross%3E1825473241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825473241&rft_id=info:pmid/&rft_els_id=S0009250916302147&rfr_iscdi=true