Condensation heat transfer in rectangular microscale geometries

•Condensation heat transfer at microscales (100

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2016-09, Vol.100, p.98-110
Hauptverfasser: Garimella, Srinivas, Agarwal, Akhil, Fronk, Brian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 98
container_title International journal of heat and mass transfer
container_volume 100
creator Garimella, Srinivas
Agarwal, Akhil
Fronk, Brian M.
description •Condensation heat transfer at microscales (100
doi_str_mv 10.1016/j.ijheatmasstransfer.2016.03.086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825472591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793101530507X</els_id><sourcerecordid>1825472591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3fd94830e3bf1b2a948762081c471afb514d2586ee9a54a4fb8586f14f7b63e03</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqXwDhm7JPhiJ3EmQBUUUCUWmC3HORdHiVPsFIm3x1FhYmE6_bpfn-4-QlZAM6BQXneZ7d5RTYMKYfLKBYM-y-MmoyyjojwhCxBVneYg6lOyoBSqtGZAz8lFCN0cKS8X5GY9uhZdUJMdXTIDk19aYl3iUU_K7Q698slgtR-DVj0mOxwHnLzFcEnOjOoDXv3MJXl7uH9dP6bbl83T-m6balYVU8pMW3PBKLLGQJOrGKoypwI0r0CZpgDe5oUoEWtVcMVNI2IywE3VlAwpW5LVkbv348cBwyQHGzT2vXI4HoIEkRe8yosaYvX2WJ3PDR6N3Hs7KP8lgcrZnezkX3dydicpk9FdRDwfERhf-rRxG7RFp7G1sxHZjvb_sG-YA4Uq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825472591</pqid></control><display><type>article</type><title>Condensation heat transfer in rectangular microscale geometries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Garimella, Srinivas ; Agarwal, Akhil ; Fronk, Brian M.</creator><creatorcontrib>Garimella, Srinivas ; Agarwal, Akhil ; Fronk, Brian M.</creatorcontrib><description><![CDATA[•Condensation heat transfer at microscales (100<Dh<160μm; 1<AR<4) measured.•Unified model for intermittent and annular flow heat transfer developed.•Effects of saturation temperature, hydraulic diameter, and aspect ratio elucidated.•The model predicts 94% of the data within ±25%. Heat transfer coefficients during condensation of refrigerant R134a in small hydraulic diameter (100<Dh<160μm) rectangular (1<AR<4) channels are presented. A novel technique to accurately determine condensation heat duty and heat transfer coefficient in such microscale geometries at small Δx is used. Models in the literature that were developed for larger tubes are shown to under predict the data. A new model that accounts for the flow mechanisms during condensation at such small scales, and takes into account the effect of G, x, Tsat, Dh and AR, is developed. The model predicts 94% of the data in the intermittent, transition and annular flow regimes within ±25%.]]></description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2016.03.086</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Annular ; Annular flow ; Channels ; Computational fluid dynamics ; Condensation ; Heat transfer ; Heat transfer coefficients ; Intermittent ; Mass transfer ; Mathematical models ; Microchannel ; Small scale</subject><ispartof>International journal of heat and mass transfer, 2016-09, Vol.100, p.98-110</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3fd94830e3bf1b2a948762081c471afb514d2586ee9a54a4fb8586f14f7b63e03</citedby><cites>FETCH-LOGICAL-c375t-3fd94830e3bf1b2a948762081c471afb514d2586ee9a54a4fb8586f14f7b63e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Garimella, Srinivas</creatorcontrib><creatorcontrib>Agarwal, Akhil</creatorcontrib><creatorcontrib>Fronk, Brian M.</creatorcontrib><title>Condensation heat transfer in rectangular microscale geometries</title><title>International journal of heat and mass transfer</title><description><![CDATA[•Condensation heat transfer at microscales (100<Dh<160μm; 1<AR<4) measured.•Unified model for intermittent and annular flow heat transfer developed.•Effects of saturation temperature, hydraulic diameter, and aspect ratio elucidated.•The model predicts 94% of the data within ±25%. Heat transfer coefficients during condensation of refrigerant R134a in small hydraulic diameter (100<Dh<160μm) rectangular (1<AR<4) channels are presented. A novel technique to accurately determine condensation heat duty and heat transfer coefficient in such microscale geometries at small Δx is used. Models in the literature that were developed for larger tubes are shown to under predict the data. A new model that accounts for the flow mechanisms during condensation at such small scales, and takes into account the effect of G, x, Tsat, Dh and AR, is developed. The model predicts 94% of the data in the intermittent, transition and annular flow regimes within ±25%.]]></description><subject>Annular</subject><subject>Annular flow</subject><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Condensation</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Intermittent</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Microchannel</subject><subject>Small scale</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAQhi0EEqXwDhm7JPhiJ3EmQBUUUCUWmC3HORdHiVPsFIm3x1FhYmE6_bpfn-4-QlZAM6BQXneZ7d5RTYMKYfLKBYM-y-MmoyyjojwhCxBVneYg6lOyoBSqtGZAz8lFCN0cKS8X5GY9uhZdUJMdXTIDk19aYl3iUU_K7Q698slgtR-DVj0mOxwHnLzFcEnOjOoDXv3MJXl7uH9dP6bbl83T-m6balYVU8pMW3PBKLLGQJOrGKoypwI0r0CZpgDe5oUoEWtVcMVNI2IywE3VlAwpW5LVkbv348cBwyQHGzT2vXI4HoIEkRe8yosaYvX2WJ3PDR6N3Hs7KP8lgcrZnezkX3dydicpk9FdRDwfERhf-rRxG7RFp7G1sxHZjvb_sG-YA4Uq</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Garimella, Srinivas</creator><creator>Agarwal, Akhil</creator><creator>Fronk, Brian M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>Condensation heat transfer in rectangular microscale geometries</title><author>Garimella, Srinivas ; Agarwal, Akhil ; Fronk, Brian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3fd94830e3bf1b2a948762081c471afb514d2586ee9a54a4fb8586f14f7b63e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annular</topic><topic>Annular flow</topic><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Condensation</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Intermittent</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Microchannel</topic><topic>Small scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garimella, Srinivas</creatorcontrib><creatorcontrib>Agarwal, Akhil</creatorcontrib><creatorcontrib>Fronk, Brian M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garimella, Srinivas</au><au>Agarwal, Akhil</au><au>Fronk, Brian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensation heat transfer in rectangular microscale geometries</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2016-09</date><risdate>2016</risdate><volume>100</volume><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract><![CDATA[•Condensation heat transfer at microscales (100<Dh<160μm; 1<AR<4) measured.•Unified model for intermittent and annular flow heat transfer developed.•Effects of saturation temperature, hydraulic diameter, and aspect ratio elucidated.•The model predicts 94% of the data within ±25%. Heat transfer coefficients during condensation of refrigerant R134a in small hydraulic diameter (100<Dh<160μm) rectangular (1<AR<4) channels are presented. A novel technique to accurately determine condensation heat duty and heat transfer coefficient in such microscale geometries at small Δx is used. Models in the literature that were developed for larger tubes are shown to under predict the data. A new model that accounts for the flow mechanisms during condensation at such small scales, and takes into account the effect of G, x, Tsat, Dh and AR, is developed. The model predicts 94% of the data in the intermittent, transition and annular flow regimes within ±25%.]]></abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2016.03.086</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2016-09, Vol.100, p.98-110
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1825472591
source ScienceDirect Journals (5 years ago - present)
subjects Annular
Annular flow
Channels
Computational fluid dynamics
Condensation
Heat transfer
Heat transfer coefficients
Intermittent
Mass transfer
Mathematical models
Microchannel
Small scale
title Condensation heat transfer in rectangular microscale geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensation%20heat%20transfer%20in%20rectangular%20microscale%20geometries&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Garimella,%20Srinivas&rft.date=2016-09&rft.volume=100&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2016.03.086&rft_dat=%3Cproquest_cross%3E1825472591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825472591&rft_id=info:pmid/&rft_els_id=S001793101530507X&rfr_iscdi=true