Fuzzy c-ordered medoids clustering for interval-valued data

Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2016-10, Vol.58, p.49-67
Hauptverfasser: D׳Urso, Pierpaolo, Leski, Jacek M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 49
container_title Pattern recognition
container_volume 58
creator D׳Urso, Pierpaolo
Leski, Jacek M.
description Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber׳s M-estimators and the Yager׳s Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided. •Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data.•A new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID) is proposed•The method uses both the Huber׳s M-estimators and the Yager׳s OWA operators to obtain its robustness.•Experiments performed on synthetic data with different types of outliers and a real application are provided.
doi_str_mv 10.1016/j.patcog.2016.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825471710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320316300383</els_id><sourcerecordid>1825471710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-21cf9fe23c26529ac2e7bf17027001a0726381328ca83f2e96c61a971e58de643</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKv_wMMevWSdJJvNLoIgxVah4EXPIWYnJWW7W5PdQvvrTVnPHobhMW8eMx8h9wxyBqx83OZ7M9h-k_OkcihyAHlBZqxSgkpW8EsyAxCMCg7imtzEuAVgKg1m5Gk5nk7HzNI-NBiwyXbY9L6JmW3HOGDw3SZzfch8l8TBtDTVmGyNGcwtuXKmjXj31-fka_n6uXij64_V--JlTW0h5UA5s652yIXlpeS1sRzVt2MKuEpnGFC8FBUTvLKmEo5jXdqSmVoxlFWDZSHm5GHK3Yf-Z8Q46J2PFtvWdNiPUbOKy0KlhyBZi8lqQx9jQKf3we9MOGoG-sxKb_XESp9ZaSh0YpXWnqc1TG8cPAYdrcfOYuMD2kEnJP8H_ALR5XMt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825471710</pqid></control><display><type>article</type><title>Fuzzy c-ordered medoids clustering for interval-valued data</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>D׳Urso, Pierpaolo ; Leski, Jacek M.</creator><creatorcontrib>D׳Urso, Pierpaolo ; Leski, Jacek M.</creatorcontrib><description>Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber׳s M-estimators and the Yager׳s Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided. •Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data.•A new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID) is proposed•The method uses both the Huber׳s M-estimators and the Yager׳s OWA operators to obtain its robustness.•Experiments performed on synthetic data with different types of outliers and a real application are provided.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2016.04.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Boundaries ; Clustering ; Fuzzy ; Fuzzy c-ordered medoids clustering ; Huber׳s M-estimators ; Interval-valued data ; Operators ; Ordered weighted averaging ; Outlier interval data ; Outliers (statistics) ; Partitioning ; Pattern recognition ; Robust clustering</subject><ispartof>Pattern recognition, 2016-10, Vol.58, p.49-67</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-21cf9fe23c26529ac2e7bf17027001a0726381328ca83f2e96c61a971e58de643</citedby><cites>FETCH-LOGICAL-c455t-21cf9fe23c26529ac2e7bf17027001a0726381328ca83f2e96c61a971e58de643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2016.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>D׳Urso, Pierpaolo</creatorcontrib><creatorcontrib>Leski, Jacek M.</creatorcontrib><title>Fuzzy c-ordered medoids clustering for interval-valued data</title><title>Pattern recognition</title><description>Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber׳s M-estimators and the Yager׳s Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided. •Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data.•A new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID) is proposed•The method uses both the Huber׳s M-estimators and the Yager׳s OWA operators to obtain its robustness.•Experiments performed on synthetic data with different types of outliers and a real application are provided.</description><subject>Algorithms</subject><subject>Boundaries</subject><subject>Clustering</subject><subject>Fuzzy</subject><subject>Fuzzy c-ordered medoids clustering</subject><subject>Huber׳s M-estimators</subject><subject>Interval-valued data</subject><subject>Operators</subject><subject>Ordered weighted averaging</subject><subject>Outlier interval data</subject><subject>Outliers (statistics)</subject><subject>Partitioning</subject><subject>Pattern recognition</subject><subject>Robust clustering</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKv_wMMevWSdJJvNLoIgxVah4EXPIWYnJWW7W5PdQvvrTVnPHobhMW8eMx8h9wxyBqx83OZ7M9h-k_OkcihyAHlBZqxSgkpW8EsyAxCMCg7imtzEuAVgKg1m5Gk5nk7HzNI-NBiwyXbY9L6JmW3HOGDw3SZzfch8l8TBtDTVmGyNGcwtuXKmjXj31-fka_n6uXij64_V--JlTW0h5UA5s652yIXlpeS1sRzVt2MKuEpnGFC8FBUTvLKmEo5jXdqSmVoxlFWDZSHm5GHK3Yf-Z8Q46J2PFtvWdNiPUbOKy0KlhyBZi8lqQx9jQKf3we9MOGoG-sxKb_XESp9ZaSh0YpXWnqc1TG8cPAYdrcfOYuMD2kEnJP8H_ALR5XMt</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>D׳Urso, Pierpaolo</creator><creator>Leski, Jacek M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Fuzzy c-ordered medoids clustering for interval-valued data</title><author>D׳Urso, Pierpaolo ; Leski, Jacek M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-21cf9fe23c26529ac2e7bf17027001a0726381328ca83f2e96c61a971e58de643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Boundaries</topic><topic>Clustering</topic><topic>Fuzzy</topic><topic>Fuzzy c-ordered medoids clustering</topic><topic>Huber׳s M-estimators</topic><topic>Interval-valued data</topic><topic>Operators</topic><topic>Ordered weighted averaging</topic><topic>Outlier interval data</topic><topic>Outliers (statistics)</topic><topic>Partitioning</topic><topic>Pattern recognition</topic><topic>Robust clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D׳Urso, Pierpaolo</creatorcontrib><creatorcontrib>Leski, Jacek M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D׳Urso, Pierpaolo</au><au>Leski, Jacek M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy c-ordered medoids clustering for interval-valued data</atitle><jtitle>Pattern recognition</jtitle><date>2016-10</date><risdate>2016</risdate><volume>58</volume><spage>49</spage><epage>67</epage><pages>49-67</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber׳s M-estimators and the Yager׳s Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided. •Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data.•A new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID) is proposed•The method uses both the Huber׳s M-estimators and the Yager׳s OWA operators to obtain its robustness.•Experiments performed on synthetic data with different types of outliers and a real application are provided.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2016.04.005</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2016-10, Vol.58, p.49-67
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1825471710
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Boundaries
Clustering
Fuzzy
Fuzzy c-ordered medoids clustering
Huber׳s M-estimators
Interval-valued data
Operators
Ordered weighted averaging
Outlier interval data
Outliers (statistics)
Partitioning
Pattern recognition
Robust clustering
title Fuzzy c-ordered medoids clustering for interval-valued data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20c-ordered%20medoids%20clustering%20for%20interval-valued%20data&rft.jtitle=Pattern%20recognition&rft.au=D%D7%B3Urso,%20Pierpaolo&rft.date=2016-10&rft.volume=58&rft.spage=49&rft.epage=67&rft.pages=49-67&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2016.04.005&rft_dat=%3Cproquest_cross%3E1825471710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825471710&rft_id=info:pmid/&rft_els_id=S0031320316300383&rfr_iscdi=true