Subfields of R with arbitrary Hausdorff dimension

Assuming CH, the continuum hypothesis, holds we show, by completing an attack first discovered by Roy Davies, that for each α between 0 and 1 there is a subring, in fact a subfield, of R with Hausdorff dimension α.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2016-07, Vol.161 (1), p.157-165
1. Verfasser: MAULDIN, R. DANIEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 157
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 161
creator MAULDIN, R. DANIEL
description Assuming CH, the continuum hypothesis, holds we show, by completing an attack first discovered by Roy Davies, that for each α between 0 and 1 there is a subring, in fact a subfield, of R with Hausdorff dimension α.
doi_str_mv 10.1017/S0305004116000207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825470075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004116000207</cupid><sourcerecordid>1825470075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-43ae80212a5a95ec9335849f8f092ee25e2228d59e12e91c4030cf18cc602d243</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFL15WZ_KxmxylaCsUBKvnJc0mmrIfNdlF_O9NaQ-ieJrD-703b4aQS4QbBCxvV8BAAHDEAgAolEdkgrxQuYSCH5PJTs53-ik5i3GTGKYQJgRX49p529Qx6132nH364T3TYe2HoMNXttBjrPvgXFb71nbR9905OXG6ifbiMKfk9eH-ZbbIl0_zx9ndMjdMwJBzpq0EilQLrYQ1ijEhuXLSgaLWUmEppbIWyiK1Cg1PDY1DaUwBtKacTcn1Pncb-o_RxqFqfTS2aXRn-zFWKKngJUApEnr1C930Y-hSuwpLhWlvwWWicE-Z0McYrKu2wbfpygqh2j2x-vPE5GEHj27Xwddv9kf0v65vFZ9wOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791584648</pqid></control><display><type>article</type><title>Subfields of R with arbitrary Hausdorff dimension</title><source>Cambridge University Press Journals Complete</source><creator>MAULDIN, R. DANIEL</creator><creatorcontrib>MAULDIN, R. DANIEL</creatorcontrib><description>Assuming CH, the continuum hypothesis, holds we show, by completing an attack first discovered by Roy Davies, that for each α between 0 and 1 there is a subring, in fact a subfield, of R with Hausdorff dimension α.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004116000207</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Continuums ; Geometry ; Mathematical analysis</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2016-07, Vol.161 (1), p.157-165</ispartof><rights>Copyright © Cambridge Philosophical Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-43ae80212a5a95ec9335849f8f092ee25e2228d59e12e91c4030cf18cc602d243</citedby><cites>FETCH-LOGICAL-c350t-43ae80212a5a95ec9335849f8f092ee25e2228d59e12e91c4030cf18cc602d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004116000207/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>MAULDIN, R. DANIEL</creatorcontrib><title>Subfields of R with arbitrary Hausdorff dimension</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>Assuming CH, the continuum hypothesis, holds we show, by completing an attack first discovered by Roy Davies, that for each α between 0 and 1 there is a subring, in fact a subfield, of R with Hausdorff dimension α.</description><subject>Continuums</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFL15WZ_KxmxylaCsUBKvnJc0mmrIfNdlF_O9NaQ-ieJrD-703b4aQS4QbBCxvV8BAAHDEAgAolEdkgrxQuYSCH5PJTs53-ik5i3GTGKYQJgRX49p529Qx6132nH364T3TYe2HoMNXttBjrPvgXFb71nbR9905OXG6ifbiMKfk9eH-ZbbIl0_zx9ndMjdMwJBzpq0EilQLrYQ1ijEhuXLSgaLWUmEppbIWyiK1Cg1PDY1DaUwBtKacTcn1Pncb-o_RxqFqfTS2aXRn-zFWKKngJUApEnr1C930Y-hSuwpLhWlvwWWicE-Z0McYrKu2wbfpygqh2j2x-vPE5GEHj27Xwddv9kf0v65vFZ9wOA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>MAULDIN, R. DANIEL</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201607</creationdate><title>Subfields of R with arbitrary Hausdorff dimension</title><author>MAULDIN, R. DANIEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-43ae80212a5a95ec9335849f8f092ee25e2228d59e12e91c4030cf18cc602d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuums</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAULDIN, R. DANIEL</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAULDIN, R. DANIEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subfields of R with arbitrary Hausdorff dimension</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2016-07</date><risdate>2016</risdate><volume>161</volume><issue>1</issue><spage>157</spage><epage>165</epage><pages>157-165</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>Assuming CH, the continuum hypothesis, holds we show, by completing an attack first discovered by Roy Davies, that for each α between 0 and 1 there is a subring, in fact a subfield, of R with Hausdorff dimension α.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004116000207</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2016-07, Vol.161 (1), p.157-165
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_1825470075
source Cambridge University Press Journals Complete
subjects Continuums
Geometry
Mathematical analysis
title Subfields of R with arbitrary Hausdorff dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subfields%20of%20R%20with%20arbitrary%20Hausdorff%20dimension&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=MAULDIN,%20R.%20DANIEL&rft.date=2016-07&rft.volume=161&rft.issue=1&rft.spage=157&rft.epage=165&rft.pages=157-165&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004116000207&rft_dat=%3Cproquest_cross%3E1825470075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791584648&rft_id=info:pmid/&rft_cupid=10_1017_S0305004116000207&rfr_iscdi=true