On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause
Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean cir...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2016-05, Vol.121 (9), p.4518-4537 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4537 |
---|---|
container_issue | 9 |
container_start_page | 4518 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 121 |
creator | Limpasuvan, Varavut Orsolini, Yvan J. Chandran, Amal Garcia, Rolando R. Smith, Anne K. |
description | Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.
Key Points
Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery
The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone
After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies |
doi_str_mv | 10.1002/2015JD024401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825469636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327612410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuAgCpbamz9gwYsHo_u9yVFarZZKQSp4C9tkYlOTbNzdtPTfG20R8VDcyyzMMwPDGwTnBF8TjOkNxURMRphyjslR0KNExmEUx_L4569eT4OBcyvcvQgzLngveJ_VyC8BpaZqjCs8IAuuMbUDZPLvztN0jrxBlV4Zi1ybZVAj5632xjVLsEWKNtpWRf2GYA21d2hT-CWCEtbaQ7anjW4dnAUnuS4dDPa1H7zc382HD-F0Nn4c3k7DlLNYhkKkSkMstcwWJFc8zhcyY5oJKZjKpVIRB5FlHCsKiwxLznLKo0iSPOVpN8f6weVub2PNRwvOJ1XhUihLXYNpXUIiKrjs4H8ojhRWgrCOXvyhK9PaujskoYwqSSgn-JAiKiaMdzGITl3tVGqNcxbypLFFpe02ITj5SjP5nWbH2Y5vihK2B20yGT-PBI2UZJ_jbJ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791348975</pqid></control><display><type>article</type><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</creator><creatorcontrib>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</creatorcontrib><description>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.
Key Points
Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery
The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone
After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024401</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplification ; Anomalies ; Atmospheric chemistry ; Climate models ; Communication ; Cooling ; Diurnal variations ; Downwelling ; Drag ; Drag (hindrance) ; Equator ; Equatorial upwelling ; Equatorial winds ; Geophysics ; Gravitational waves ; Gravity waves ; Lower thermosphere ; major sudden stratospheric warming ; Mesosphere ; Mesospheric cooling ; middle atmosphere dynamics ; migrating semidiurnal tides ; Ocean circulation ; Organic chemistry ; Ozone ; Planetary waves ; Polar vortex ; Polar wind ; Poles ; Semidiurnal tides ; Stratopause ; Stratosphere ; stratosphere and mesosphere coupling ; Stratospheric warming ; Temperature ; Thermosphere ; Tides ; Tropical climate ; Upwelling ; Wave number ; Wind ; Winter</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-05, Vol.121 (9), p.4518-4537</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</citedby><cites>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Limpasuvan, Varavut</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Chandran, Amal</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><title>Journal of geophysical research. Atmospheres</title><description>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.
Key Points
Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery
The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone
After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</description><subject>Amplification</subject><subject>Anomalies</subject><subject>Atmospheric chemistry</subject><subject>Climate models</subject><subject>Communication</subject><subject>Cooling</subject><subject>Diurnal variations</subject><subject>Downwelling</subject><subject>Drag</subject><subject>Drag (hindrance)</subject><subject>Equator</subject><subject>Equatorial upwelling</subject><subject>Equatorial winds</subject><subject>Geophysics</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Lower thermosphere</subject><subject>major sudden stratospheric warming</subject><subject>Mesosphere</subject><subject>Mesospheric cooling</subject><subject>middle atmosphere dynamics</subject><subject>migrating semidiurnal tides</subject><subject>Ocean circulation</subject><subject>Organic chemistry</subject><subject>Ozone</subject><subject>Planetary waves</subject><subject>Polar vortex</subject><subject>Polar wind</subject><subject>Poles</subject><subject>Semidiurnal tides</subject><subject>Stratopause</subject><subject>Stratosphere</subject><subject>stratosphere and mesosphere coupling</subject><subject>Stratospheric warming</subject><subject>Temperature</subject><subject>Thermosphere</subject><subject>Tides</subject><subject>Tropical climate</subject><subject>Upwelling</subject><subject>Wave number</subject><subject>Wind</subject><subject>Winter</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuAgCpbamz9gwYsHo_u9yVFarZZKQSp4C9tkYlOTbNzdtPTfG20R8VDcyyzMMwPDGwTnBF8TjOkNxURMRphyjslR0KNExmEUx_L4569eT4OBcyvcvQgzLngveJ_VyC8BpaZqjCs8IAuuMbUDZPLvztN0jrxBlV4Zi1ybZVAj5632xjVLsEWKNtpWRf2GYA21d2hT-CWCEtbaQ7anjW4dnAUnuS4dDPa1H7zc382HD-F0Nn4c3k7DlLNYhkKkSkMstcwWJFc8zhcyY5oJKZjKpVIRB5FlHCsKiwxLznLKo0iSPOVpN8f6weVub2PNRwvOJ1XhUihLXYNpXUIiKrjs4H8ojhRWgrCOXvyhK9PaujskoYwqSSgn-JAiKiaMdzGITl3tVGqNcxbypLFFpe02ITj5SjP5nWbH2Y5vihK2B20yGT-PBI2UZJ_jbJ8T</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Limpasuvan, Varavut</creator><creator>Orsolini, Yvan J.</creator><creator>Chandran, Amal</creator><creator>Garcia, Rolando R.</creator><creator>Smith, Anne K.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160516</creationdate><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><author>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Anomalies</topic><topic>Atmospheric chemistry</topic><topic>Climate models</topic><topic>Communication</topic><topic>Cooling</topic><topic>Diurnal variations</topic><topic>Downwelling</topic><topic>Drag</topic><topic>Drag (hindrance)</topic><topic>Equator</topic><topic>Equatorial upwelling</topic><topic>Equatorial winds</topic><topic>Geophysics</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Lower thermosphere</topic><topic>major sudden stratospheric warming</topic><topic>Mesosphere</topic><topic>Mesospheric cooling</topic><topic>middle atmosphere dynamics</topic><topic>migrating semidiurnal tides</topic><topic>Ocean circulation</topic><topic>Organic chemistry</topic><topic>Ozone</topic><topic>Planetary waves</topic><topic>Polar vortex</topic><topic>Polar wind</topic><topic>Poles</topic><topic>Semidiurnal tides</topic><topic>Stratopause</topic><topic>Stratosphere</topic><topic>stratosphere and mesosphere coupling</topic><topic>Stratospheric warming</topic><topic>Temperature</topic><topic>Thermosphere</topic><topic>Tides</topic><topic>Tropical climate</topic><topic>Upwelling</topic><topic>Wave number</topic><topic>Wind</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limpasuvan, Varavut</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Chandran, Amal</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limpasuvan, Varavut</au><au>Orsolini, Yvan J.</au><au>Chandran, Amal</au><au>Garcia, Rolando R.</au><au>Smith, Anne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-05-16</date><risdate>2016</risdate><volume>121</volume><issue>9</issue><spage>4518</spage><epage>4537</epage><pages>4518-4537</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.
Key Points
Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery
The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone
After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024401</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2016-05, Vol.121 (9), p.4518-4537 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825469636 |
source | Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Amplification Anomalies Atmospheric chemistry Climate models Communication Cooling Diurnal variations Downwelling Drag Drag (hindrance) Equator Equatorial upwelling Equatorial winds Geophysics Gravitational waves Gravity waves Lower thermosphere major sudden stratospheric warming Mesosphere Mesospheric cooling middle atmosphere dynamics migrating semidiurnal tides Ocean circulation Organic chemistry Ozone Planetary waves Polar vortex Polar wind Poles Semidiurnal tides Stratopause Stratosphere stratosphere and mesosphere coupling Stratospheric warming Temperature Thermosphere Tides Tropical climate Upwelling Wave number Wind Winter |
title | On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20composite%20response%20of%20the%20MLT%20to%20major%20sudden%20stratospheric%20warming%20events%20with%20elevated%20stratopause&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Limpasuvan,%20Varavut&rft.date=2016-05-16&rft.volume=121&rft.issue=9&rft.spage=4518&rft.epage=4537&rft.pages=4518-4537&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024401&rft_dat=%3Cproquest_cross%3E2327612410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791348975&rft_id=info:pmid/&rfr_iscdi=true |