On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause

Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean cir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2016-05, Vol.121 (9), p.4518-4537
Hauptverfasser: Limpasuvan, Varavut, Orsolini, Yvan J., Chandran, Amal, Garcia, Rolando R., Smith, Anne K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4537
container_issue 9
container_start_page 4518
container_title Journal of geophysical research. Atmospheres
container_volume 121
creator Limpasuvan, Varavut
Orsolini, Yvan J.
Chandran, Amal
Garcia, Rolando R.
Smith, Anne K.
description Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes. Key Points Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies
doi_str_mv 10.1002/2015JD024401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825469636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327612410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuAgCpbamz9gwYsHo_u9yVFarZZKQSp4C9tkYlOTbNzdtPTfG20R8VDcyyzMMwPDGwTnBF8TjOkNxURMRphyjslR0KNExmEUx_L4569eT4OBcyvcvQgzLngveJ_VyC8BpaZqjCs8IAuuMbUDZPLvztN0jrxBlV4Zi1ybZVAj5632xjVLsEWKNtpWRf2GYA21d2hT-CWCEtbaQ7anjW4dnAUnuS4dDPa1H7zc382HD-F0Nn4c3k7DlLNYhkKkSkMstcwWJFc8zhcyY5oJKZjKpVIRB5FlHCsKiwxLznLKo0iSPOVpN8f6weVub2PNRwvOJ1XhUihLXYNpXUIiKrjs4H8ojhRWgrCOXvyhK9PaujskoYwqSSgn-JAiKiaMdzGITl3tVGqNcxbypLFFpe02ITj5SjP5nWbH2Y5vihK2B20yGT-PBI2UZJ_jbJ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791348975</pqid></control><display><type>article</type><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</creator><creatorcontrib>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</creatorcontrib><description>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes. Key Points Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024401</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplification ; Anomalies ; Atmospheric chemistry ; Climate models ; Communication ; Cooling ; Diurnal variations ; Downwelling ; Drag ; Drag (hindrance) ; Equator ; Equatorial upwelling ; Equatorial winds ; Geophysics ; Gravitational waves ; Gravity waves ; Lower thermosphere ; major sudden stratospheric warming ; Mesosphere ; Mesospheric cooling ; middle atmosphere dynamics ; migrating semidiurnal tides ; Ocean circulation ; Organic chemistry ; Ozone ; Planetary waves ; Polar vortex ; Polar wind ; Poles ; Semidiurnal tides ; Stratopause ; Stratosphere ; stratosphere and mesosphere coupling ; Stratospheric warming ; Temperature ; Thermosphere ; Tides ; Tropical climate ; Upwelling ; Wave number ; Wind ; Winter</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-05, Vol.121 (9), p.4518-4537</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</citedby><cites>FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Limpasuvan, Varavut</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Chandran, Amal</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><title>Journal of geophysical research. Atmospheres</title><description>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes. Key Points Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</description><subject>Amplification</subject><subject>Anomalies</subject><subject>Atmospheric chemistry</subject><subject>Climate models</subject><subject>Communication</subject><subject>Cooling</subject><subject>Diurnal variations</subject><subject>Downwelling</subject><subject>Drag</subject><subject>Drag (hindrance)</subject><subject>Equator</subject><subject>Equatorial upwelling</subject><subject>Equatorial winds</subject><subject>Geophysics</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Lower thermosphere</subject><subject>major sudden stratospheric warming</subject><subject>Mesosphere</subject><subject>Mesospheric cooling</subject><subject>middle atmosphere dynamics</subject><subject>migrating semidiurnal tides</subject><subject>Ocean circulation</subject><subject>Organic chemistry</subject><subject>Ozone</subject><subject>Planetary waves</subject><subject>Polar vortex</subject><subject>Polar wind</subject><subject>Poles</subject><subject>Semidiurnal tides</subject><subject>Stratopause</subject><subject>Stratosphere</subject><subject>stratosphere and mesosphere coupling</subject><subject>Stratospheric warming</subject><subject>Temperature</subject><subject>Thermosphere</subject><subject>Tides</subject><subject>Tropical climate</subject><subject>Upwelling</subject><subject>Wave number</subject><subject>Wind</subject><subject>Winter</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuAgCpbamz9gwYsHo_u9yVFarZZKQSp4C9tkYlOTbNzdtPTfG20R8VDcyyzMMwPDGwTnBF8TjOkNxURMRphyjslR0KNExmEUx_L4569eT4OBcyvcvQgzLngveJ_VyC8BpaZqjCs8IAuuMbUDZPLvztN0jrxBlV4Zi1ybZVAj5632xjVLsEWKNtpWRf2GYA21d2hT-CWCEtbaQ7anjW4dnAUnuS4dDPa1H7zc382HD-F0Nn4c3k7DlLNYhkKkSkMstcwWJFc8zhcyY5oJKZjKpVIRB5FlHCsKiwxLznLKo0iSPOVpN8f6weVub2PNRwvOJ1XhUihLXYNpXUIiKrjs4H8ojhRWgrCOXvyhK9PaujskoYwqSSgn-JAiKiaMdzGITl3tVGqNcxbypLFFpe02ITj5SjP5nWbH2Y5vihK2B20yGT-PBI2UZJ_jbJ8T</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Limpasuvan, Varavut</creator><creator>Orsolini, Yvan J.</creator><creator>Chandran, Amal</creator><creator>Garcia, Rolando R.</creator><creator>Smith, Anne K.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160516</creationdate><title>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</title><author>Limpasuvan, Varavut ; Orsolini, Yvan J. ; Chandran, Amal ; Garcia, Rolando R. ; Smith, Anne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-55c7ae96a6db1f749fb6d3a356537f67784e5dd4072ebd0643f248861fc4ce963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Anomalies</topic><topic>Atmospheric chemistry</topic><topic>Climate models</topic><topic>Communication</topic><topic>Cooling</topic><topic>Diurnal variations</topic><topic>Downwelling</topic><topic>Drag</topic><topic>Drag (hindrance)</topic><topic>Equator</topic><topic>Equatorial upwelling</topic><topic>Equatorial winds</topic><topic>Geophysics</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Lower thermosphere</topic><topic>major sudden stratospheric warming</topic><topic>Mesosphere</topic><topic>Mesospheric cooling</topic><topic>middle atmosphere dynamics</topic><topic>migrating semidiurnal tides</topic><topic>Ocean circulation</topic><topic>Organic chemistry</topic><topic>Ozone</topic><topic>Planetary waves</topic><topic>Polar vortex</topic><topic>Polar wind</topic><topic>Poles</topic><topic>Semidiurnal tides</topic><topic>Stratopause</topic><topic>Stratosphere</topic><topic>stratosphere and mesosphere coupling</topic><topic>Stratospheric warming</topic><topic>Temperature</topic><topic>Thermosphere</topic><topic>Tides</topic><topic>Tropical climate</topic><topic>Upwelling</topic><topic>Wave number</topic><topic>Wind</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limpasuvan, Varavut</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Chandran, Amal</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limpasuvan, Varavut</au><au>Orsolini, Yvan J.</au><au>Chandran, Amal</au><au>Garcia, Rolando R.</au><au>Smith, Anne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-05-16</date><risdate>2016</risdate><volume>121</volume><issue>9</issue><spage>4518</spage><epage>4537</epage><pages>4518-4537</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Based on a climate‐chemistry model (constrained by reanalyses below ~50 km), the zonal‐mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5–12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi‐stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes. Key Points Westward traveling planetary waves important to the elevated stratopause (ES) evolution and the stratopause recovery The impact of ES events extends well across the equator, altering the tropical wind, temperature, and ozone After ES events, the migrating semidiurnal tides amplify due to tropical stratospheric ozone and wind anomalies</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024401</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2016-05, Vol.121 (9), p.4518-4537
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1825469636
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Amplification
Anomalies
Atmospheric chemistry
Climate models
Communication
Cooling
Diurnal variations
Downwelling
Drag
Drag (hindrance)
Equator
Equatorial upwelling
Equatorial winds
Geophysics
Gravitational waves
Gravity waves
Lower thermosphere
major sudden stratospheric warming
Mesosphere
Mesospheric cooling
middle atmosphere dynamics
migrating semidiurnal tides
Ocean circulation
Organic chemistry
Ozone
Planetary waves
Polar vortex
Polar wind
Poles
Semidiurnal tides
Stratopause
Stratosphere
stratosphere and mesosphere coupling
Stratospheric warming
Temperature
Thermosphere
Tides
Tropical climate
Upwelling
Wave number
Wind
Winter
title On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20composite%20response%20of%20the%20MLT%20to%20major%20sudden%20stratospheric%20warming%20events%20with%20elevated%20stratopause&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Limpasuvan,%20Varavut&rft.date=2016-05-16&rft.volume=121&rft.issue=9&rft.spage=4518&rft.epage=4537&rft.pages=4518-4537&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024401&rft_dat=%3Cproquest_cross%3E2327612410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791348975&rft_id=info:pmid/&rfr_iscdi=true