Immobilization of a multi‐enzyme system for L‐amino acids production
BACKGROUND: Four enzymes were immobilized for the production of optically pure natural and non‐natural L‐amino acids via the ‘Double‐Racemase Hydantoinase Process’. Immobilization constitutes an empirical process, and for each enzyme we tested 11 carriers with different functional groups; epoxide, E...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2016-07, Vol.91 (7), p.1972-1981 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1981 |
---|---|
container_issue | 7 |
container_start_page | 1972 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 91 |
creator | Rodríguez-Alonso, María J Rodríguez-Vico, Felipe Las Heras-Vázquez, Francisco J Clemente-Jiménez, Josefa M |
description | BACKGROUND: Four enzymes were immobilized for the production of optically pure natural and non‐natural L‐amino acids via the ‘Double‐Racemase Hydantoinase Process’. Immobilization constitutes an empirical process, and for each enzyme we tested 11 carriers with different functional groups; epoxide, EC‐EP, EC‐HFA, IB‐150 and IB‐350, carboxylic acid IB‐C435, quaternary ammonium IB‐A161, IB‐A171 and IB‐A369, aromatic group IB‐S861, and hydroxyl group IB‐S60S and IB‐S60P. RESULTS: Each protein showed preference for binding on one or several supports: D,L‐hydantoinase/IB‐350, hydantoin racemase/EC‐EP, L‐carbamoylase/EC‐EP and carbamoyl racemase/IB‐A161. The process was optimized for each enzyme by modifying temperature, pH and ionic strength. For the enzymatic cascade, it was demonstrated that it was essential to use supports having homogeneous characteristics. The product of the first reaction is the substrate of the next one, and so on. Free mass diffusion from one enzyme to the other is crucial to avoid retention on the support and to maintain the protein–substrate interaction constant. CONCLUSION: It was proved that support size, weight and hydrophobicity must be homogeneous to avoid the formation of separate layers of the matrix selected. For this reason, the support IB‐350 was used for the four enzymes, even though it may not be the most efficient one for some of them. © 2015 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.4787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825467983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808716504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4627-bbcf9e8885db9af612fabdcb4d5781566d2933d0f1f214c3a272e6005b4546833</originalsourceid><addsrcrecordid>eNqN0MtO3DAUBmCrolIHyqJP0Ejd0EXAdnzLEkblUkYgwdAiNpbj2JWnSTzYieiw4hF4xj4JHgWxQEJiZeno-8-RfwC-ILiLIMR7C91Xu4QL_gFMECx5ThiDG2ACMRM5ppx-ApsxLiCETGA2Accnbesr17h71TvfZd5mKmuHpnf_Hx5Nd79qTRZXsTdtZn3IZmmqWtf5TGlXx2wZfD3odfIz-GhVE83287sFrg5_zKfH-ez86GS6P8s1YZjnVaVtaYQQtK5KZRnCVlW1rkhNuUCUsRqXRVFDiyxGRBcKc2wYhLQilDBRFFtgZ9ybTt8OJvaydVGbplGd8UOUSOAEefkuCgVHjEKS6LdXdOGH0KWPSMRLRCnlBCX1fVQ6-BiDsXIZXKvCSiIo1_XLdf1yXX-ye6O9c41ZvQ3lz-n84DmRjwmX6v73klDhr2S84FT-PjuS89PLm1_XF2dylvzX0VvlpfoTXJRXlxii1BbipESkeAKE86By</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791555741</pqid></control><display><type>article</type><title>Immobilization of a multi‐enzyme system for L‐amino acids production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodríguez-Alonso, María J ; Rodríguez-Vico, Felipe ; Las Heras-Vázquez, Francisco J ; Clemente-Jiménez, Josefa M</creator><creatorcontrib>Rodríguez-Alonso, María J ; Rodríguez-Vico, Felipe ; Las Heras-Vázquez, Francisco J ; Clemente-Jiménez, Josefa M</creatorcontrib><description>BACKGROUND: Four enzymes were immobilized for the production of optically pure natural and non‐natural L‐amino acids via the ‘Double‐Racemase Hydantoinase Process’. Immobilization constitutes an empirical process, and for each enzyme we tested 11 carriers with different functional groups; epoxide, EC‐EP, EC‐HFA, IB‐150 and IB‐350, carboxylic acid IB‐C435, quaternary ammonium IB‐A161, IB‐A171 and IB‐A369, aromatic group IB‐S861, and hydroxyl group IB‐S60S and IB‐S60P. RESULTS: Each protein showed preference for binding on one or several supports: D,L‐hydantoinase/IB‐350, hydantoin racemase/EC‐EP, L‐carbamoylase/EC‐EP and carbamoyl racemase/IB‐A161. The process was optimized for each enzyme by modifying temperature, pH and ionic strength. For the enzymatic cascade, it was demonstrated that it was essential to use supports having homogeneous characteristics. The product of the first reaction is the substrate of the next one, and so on. Free mass diffusion from one enzyme to the other is crucial to avoid retention on the support and to maintain the protein–substrate interaction constant. CONCLUSION: It was proved that support size, weight and hydrophobicity must be homogeneous to avoid the formation of separate layers of the matrix selected. For this reason, the support IB‐350 was used for the four enzymes, even though it may not be the most efficient one for some of them. © 2015 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4787</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Binding ; Cascades ; Chemical technology ; Constants ; enzymatic cascade ; Enzymes ; Hydrophobicity ; Hydroxyl groups ; Immobilization ; L-amino acids</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2016-07, Vol.91 (7), p.1972-1981</ispartof><rights>2015 Society of Chemical Industry</rights><rights>2016 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4627-bbcf9e8885db9af612fabdcb4d5781566d2933d0f1f214c3a272e6005b4546833</citedby><cites>FETCH-LOGICAL-c4627-bbcf9e8885db9af612fabdcb4d5781566d2933d0f1f214c3a272e6005b4546833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4787$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4787$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rodríguez-Alonso, María J</creatorcontrib><creatorcontrib>Rodríguez-Vico, Felipe</creatorcontrib><creatorcontrib>Las Heras-Vázquez, Francisco J</creatorcontrib><creatorcontrib>Clemente-Jiménez, Josefa M</creatorcontrib><title>Immobilization of a multi‐enzyme system for L‐amino acids production</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>BACKGROUND: Four enzymes were immobilized for the production of optically pure natural and non‐natural L‐amino acids via the ‘Double‐Racemase Hydantoinase Process’. Immobilization constitutes an empirical process, and for each enzyme we tested 11 carriers with different functional groups; epoxide, EC‐EP, EC‐HFA, IB‐150 and IB‐350, carboxylic acid IB‐C435, quaternary ammonium IB‐A161, IB‐A171 and IB‐A369, aromatic group IB‐S861, and hydroxyl group IB‐S60S and IB‐S60P. RESULTS: Each protein showed preference for binding on one or several supports: D,L‐hydantoinase/IB‐350, hydantoin racemase/EC‐EP, L‐carbamoylase/EC‐EP and carbamoyl racemase/IB‐A161. The process was optimized for each enzyme by modifying temperature, pH and ionic strength. For the enzymatic cascade, it was demonstrated that it was essential to use supports having homogeneous characteristics. The product of the first reaction is the substrate of the next one, and so on. Free mass diffusion from one enzyme to the other is crucial to avoid retention on the support and to maintain the protein–substrate interaction constant. CONCLUSION: It was proved that support size, weight and hydrophobicity must be homogeneous to avoid the formation of separate layers of the matrix selected. For this reason, the support IB‐350 was used for the four enzymes, even though it may not be the most efficient one for some of them. © 2015 Society of Chemical Industry</description><subject>Binding</subject><subject>Cascades</subject><subject>Chemical technology</subject><subject>Constants</subject><subject>enzymatic cascade</subject><subject>Enzymes</subject><subject>Hydrophobicity</subject><subject>Hydroxyl groups</subject><subject>Immobilization</subject><subject>L-amino acids</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0MtO3DAUBmCrolIHyqJP0Ejd0EXAdnzLEkblUkYgwdAiNpbj2JWnSTzYieiw4hF4xj4JHgWxQEJiZeno-8-RfwC-ILiLIMR7C91Xu4QL_gFMECx5ThiDG2ACMRM5ppx-ApsxLiCETGA2Accnbesr17h71TvfZd5mKmuHpnf_Hx5Nd79qTRZXsTdtZn3IZmmqWtf5TGlXx2wZfD3odfIz-GhVE83287sFrg5_zKfH-ez86GS6P8s1YZjnVaVtaYQQtK5KZRnCVlW1rkhNuUCUsRqXRVFDiyxGRBcKc2wYhLQilDBRFFtgZ9ybTt8OJvaydVGbplGd8UOUSOAEefkuCgVHjEKS6LdXdOGH0KWPSMRLRCnlBCX1fVQ6-BiDsXIZXKvCSiIo1_XLdf1yXX-ye6O9c41ZvQ3lz-n84DmRjwmX6v73klDhr2S84FT-PjuS89PLm1_XF2dylvzX0VvlpfoTXJRXlxii1BbipESkeAKE86By</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rodríguez-Alonso, María J</creator><creator>Rodríguez-Vico, Felipe</creator><creator>Las Heras-Vázquez, Francisco J</creator><creator>Clemente-Jiménez, Josefa M</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201607</creationdate><title>Immobilization of a multi‐enzyme system for L‐amino acids production</title><author>Rodríguez-Alonso, María J ; Rodríguez-Vico, Felipe ; Las Heras-Vázquez, Francisco J ; Clemente-Jiménez, Josefa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4627-bbcf9e8885db9af612fabdcb4d5781566d2933d0f1f214c3a272e6005b4546833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding</topic><topic>Cascades</topic><topic>Chemical technology</topic><topic>Constants</topic><topic>enzymatic cascade</topic><topic>Enzymes</topic><topic>Hydrophobicity</topic><topic>Hydroxyl groups</topic><topic>Immobilization</topic><topic>L-amino acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Alonso, María J</creatorcontrib><creatorcontrib>Rodríguez-Vico, Felipe</creatorcontrib><creatorcontrib>Las Heras-Vázquez, Francisco J</creatorcontrib><creatorcontrib>Clemente-Jiménez, Josefa M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Alonso, María J</au><au>Rodríguez-Vico, Felipe</au><au>Las Heras-Vázquez, Francisco J</au><au>Clemente-Jiménez, Josefa M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of a multi‐enzyme system for L‐amino acids production</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2016-07</date><risdate>2016</risdate><volume>91</volume><issue>7</issue><spage>1972</spage><epage>1981</epage><pages>1972-1981</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND: Four enzymes were immobilized for the production of optically pure natural and non‐natural L‐amino acids via the ‘Double‐Racemase Hydantoinase Process’. Immobilization constitutes an empirical process, and for each enzyme we tested 11 carriers with different functional groups; epoxide, EC‐EP, EC‐HFA, IB‐150 and IB‐350, carboxylic acid IB‐C435, quaternary ammonium IB‐A161, IB‐A171 and IB‐A369, aromatic group IB‐S861, and hydroxyl group IB‐S60S and IB‐S60P. RESULTS: Each protein showed preference for binding on one or several supports: D,L‐hydantoinase/IB‐350, hydantoin racemase/EC‐EP, L‐carbamoylase/EC‐EP and carbamoyl racemase/IB‐A161. The process was optimized for each enzyme by modifying temperature, pH and ionic strength. For the enzymatic cascade, it was demonstrated that it was essential to use supports having homogeneous characteristics. The product of the first reaction is the substrate of the next one, and so on. Free mass diffusion from one enzyme to the other is crucial to avoid retention on the support and to maintain the protein–substrate interaction constant. CONCLUSION: It was proved that support size, weight and hydrophobicity must be homogeneous to avoid the formation of separate layers of the matrix selected. For this reason, the support IB‐350 was used for the four enzymes, even though it may not be the most efficient one for some of them. © 2015 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.4787</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2016-07, Vol.91 (7), p.1972-1981 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825467983 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Binding Cascades Chemical technology Constants enzymatic cascade Enzymes Hydrophobicity Hydroxyl groups Immobilization L-amino acids |
title | Immobilization of a multi‐enzyme system for L‐amino acids production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20a%20multi%E2%80%90enzyme%20system%20for%20L%E2%80%90amino%20acids%20production&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Rodr%C3%ADguez-Alonso,%20Mar%C3%ADa%20J&rft.date=2016-07&rft.volume=91&rft.issue=7&rft.spage=1972&rft.epage=1981&rft.pages=1972-1981&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.4787&rft_dat=%3Cproquest_cross%3E1808716504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791555741&rft_id=info:pmid/&rfr_iscdi=true |