Karhunen Loève expansion and distribution of non-Gaussian process maximum

In this note we show that when a second order random process is modeled through its truncated Karhunen Loève expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probabilistic engineering mechanics 2016-01, Vol.43, p.85-90
1. Verfasser: Poirion, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 85
container_title Probabilistic engineering mechanics
container_volume 43
creator Poirion, Fabrice
description In this note we show that when a second order random process is modeled through its truncated Karhunen Loève expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean number of local maximums and more generally of Rice's moments can be derived in terms of Gaussian integrals. Several illustrations are given related to academic examples and natural hazards models. •Numerical expressions are given to compute the distribution of a process and its derivative.•They are based on Karhunen Loève expansion and Gaussian mixture model.•Application to Rice's formula is given.•Application to the calculation of extreme is given.•Several examples illustrate the effectiveness of the approach.
doi_str_mv 10.1016/j.probengmech.2015.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825466913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266892015300667</els_id><sourcerecordid>1825466913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-975d8d5846e8df7092b762ed721438287416ab0b533f89551a3b933e86fd716a3</originalsourceid><addsrcrecordid>eNqNkMlOwzAQhi0EEmV5h3DjkuAl3o6oYq_EBc6WY0_AVeMUO6nKG_EevBipyoEjp5Fm_kXzIXRBcEUwEVfLap36BuJbB-69opjwitAKY36AZkRJVdZU8kM0w1SIUmmKj9FJzkuMiSS1nqHHJ5vexwixWPTfXxsoYLu2MYc-Fjb6woc8pNCMw27Rt0XsY3lnx5yDjcXU7CDnorPb0I3dGTpq7SrD-e88Ra-3Ny_z-3LxfPcwv16UjvF6KLXkXnmuagHKtxJr2khBwUtKaqaokjURtsENZ6xVmnNiWaMZAyVaL6cTO0WX-9yp_2OEPJguZAerlY3Qj9kQRXkthCZskuq91KU-5wStWafQ2fRpCDY7fmZp_vAzO36GUDPxm7zzvRemXzYBkskuQHTgQwI3GN-Hf6T8AICDf9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825466913</pqid></control><display><type>article</type><title>Karhunen Loève expansion and distribution of non-Gaussian process maximum</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Poirion, Fabrice</creator><creatorcontrib>Poirion, Fabrice</creatorcontrib><description>In this note we show that when a second order random process is modeled through its truncated Karhunen Loève expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean number of local maximums and more generally of Rice's moments can be derived in terms of Gaussian integrals. Several illustrations are given related to academic examples and natural hazards models. •Numerical expressions are given to compute the distribution of a process and its derivative.•They are based on Karhunen Loève expansion and Gaussian mixture model.•Application to Rice's formula is given.•Application to the calculation of extreme is given.•Several examples illustrate the effectiveness of the approach.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2015.12.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Extreme value distribution ; Gaussian ; Illustrations ; Integrals ; Kernels ; Non-Gaussian ; Non-stationary ; Probabilistic methods ; Probability theory ; Random process ; Random processes ; Random variables ; Rice's series ; Simulation</subject><ispartof>Probabilistic engineering mechanics, 2016-01, Vol.43, p.85-90</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-975d8d5846e8df7092b762ed721438287416ab0b533f89551a3b933e86fd716a3</citedby><cites>FETCH-LOGICAL-c354t-975d8d5846e8df7092b762ed721438287416ab0b533f89551a3b933e86fd716a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266892015300667$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Poirion, Fabrice</creatorcontrib><title>Karhunen Loève expansion and distribution of non-Gaussian process maximum</title><title>Probabilistic engineering mechanics</title><description>In this note we show that when a second order random process is modeled through its truncated Karhunen Loève expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean number of local maximums and more generally of Rice's moments can be derived in terms of Gaussian integrals. Several illustrations are given related to academic examples and natural hazards models. •Numerical expressions are given to compute the distribution of a process and its derivative.•They are based on Karhunen Loève expansion and Gaussian mixture model.•Application to Rice's formula is given.•Application to the calculation of extreme is given.•Several examples illustrate the effectiveness of the approach.</description><subject>Extreme value distribution</subject><subject>Gaussian</subject><subject>Illustrations</subject><subject>Integrals</subject><subject>Kernels</subject><subject>Non-Gaussian</subject><subject>Non-stationary</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Random process</subject><subject>Random processes</subject><subject>Random variables</subject><subject>Rice's series</subject><subject>Simulation</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMlOwzAQhi0EEmV5h3DjkuAl3o6oYq_EBc6WY0_AVeMUO6nKG_EevBipyoEjp5Fm_kXzIXRBcEUwEVfLap36BuJbB-69opjwitAKY36AZkRJVdZU8kM0w1SIUmmKj9FJzkuMiSS1nqHHJ5vexwixWPTfXxsoYLu2MYc-Fjb6woc8pNCMw27Rt0XsY3lnx5yDjcXU7CDnorPb0I3dGTpq7SrD-e88Ra-3Ny_z-3LxfPcwv16UjvF6KLXkXnmuagHKtxJr2khBwUtKaqaokjURtsENZ6xVmnNiWaMZAyVaL6cTO0WX-9yp_2OEPJguZAerlY3Qj9kQRXkthCZskuq91KU-5wStWafQ2fRpCDY7fmZp_vAzO36GUDPxm7zzvRemXzYBkskuQHTgQwI3GN-Hf6T8AICDf9E</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Poirion, Fabrice</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201601</creationdate><title>Karhunen Loève expansion and distribution of non-Gaussian process maximum</title><author>Poirion, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-975d8d5846e8df7092b762ed721438287416ab0b533f89551a3b933e86fd716a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Extreme value distribution</topic><topic>Gaussian</topic><topic>Illustrations</topic><topic>Integrals</topic><topic>Kernels</topic><topic>Non-Gaussian</topic><topic>Non-stationary</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Random process</topic><topic>Random processes</topic><topic>Random variables</topic><topic>Rice's series</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poirion, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poirion, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Karhunen Loève expansion and distribution of non-Gaussian process maximum</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2016-01</date><risdate>2016</risdate><volume>43</volume><spage>85</spage><epage>90</epage><pages>85-90</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>In this note we show that when a second order random process is modeled through its truncated Karhunen Loève expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean number of local maximums and more generally of Rice's moments can be derived in terms of Gaussian integrals. Several illustrations are given related to academic examples and natural hazards models. •Numerical expressions are given to compute the distribution of a process and its derivative.•They are based on Karhunen Loève expansion and Gaussian mixture model.•Application to Rice's formula is given.•Application to the calculation of extreme is given.•Several examples illustrate the effectiveness of the approach.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2015.12.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-8920
ispartof Probabilistic engineering mechanics, 2016-01, Vol.43, p.85-90
issn 0266-8920
1878-4275
language eng
recordid cdi_proquest_miscellaneous_1825466913
source Elsevier ScienceDirect Journals Complete
subjects Extreme value distribution
Gaussian
Illustrations
Integrals
Kernels
Non-Gaussian
Non-stationary
Probabilistic methods
Probability theory
Random process
Random processes
Random variables
Rice's series
Simulation
title Karhunen Loève expansion and distribution of non-Gaussian process maximum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Karhunen%20Lo%C3%A8ve%20expansion%20and%20distribution%20of%20non-Gaussian%20process%20maximum&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Poirion,%20Fabrice&rft.date=2016-01&rft.volume=43&rft.spage=85&rft.epage=90&rft.pages=85-90&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2015.12.005&rft_dat=%3Cproquest_cross%3E1825466913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825466913&rft_id=info:pmid/&rft_els_id=S0266892015300667&rfr_iscdi=true