Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions
The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macros...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2016-11, Vol.306, p.300-315 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | |
container_start_page | 300 |
container_title | Journal of computational and applied mathematics |
container_volume | 306 |
creator | Ritter, Juliane Klar, Axel Schneider, Florian |
description | The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy. |
doi_str_mv | 10.1016/j.cam.2016.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825466578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716301923</els_id><sourcerecordid>1825466578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGweWRJ8a5yICVXcpEowwGxc50S4xHZru0DfHldlZjq_zn8ZPoQuKakpoc31qjba1azImoia0O4ITWgru4pK2R6jCeFSVkQweYrOUloRQpqOigl6f9ExWz1WLjjwGTvrrdu6qugY1jvsQg9jwkOI-NN6yNZg8wEuZP1jE4bNVmcbfMLW4-ABa9_j_B1wb8ta2jvn6GTQY4KLvztFb_d3r_PHavH88DS_XVSGS56rTgvOOO9ayijVRncC5Ewa3S8HsRS9lg1rmoGWP-cDCNGTodUdE8xQ3Q7Lhk_R1WF3HcNmCykrZ5OBcdQewjYp2rKZaJqZbEuUHqImhpQiDGodrdNxpyhRe5pqpQpNtaepiFCFZuncHDqFBnxZiCoZC95AbyOYrPpg_2n_Ar9GfrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825466578</pqid></control><display><type>article</type><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</creator><creatorcontrib>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</creatorcontrib><description>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.04.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Chemotaxis ; Computation ; Density ; Macroscopic equations ; Mathematical analysis ; Mathematical models ; Minimum entropy ; Moment models ; Strategy ; Two dimensional</subject><ispartof>Journal of computational and applied mathematics, 2016-11, Vol.306, p.300-315</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</citedby><cites>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</cites><orcidid>0000-0002-7052-8404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ritter, Juliane</creatorcontrib><creatorcontrib>Klar, Axel</creatorcontrib><creatorcontrib>Schneider, Florian</creatorcontrib><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><title>Journal of computational and applied mathematics</title><description>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</description><subject>Approximation</subject><subject>Chemotaxis</subject><subject>Computation</subject><subject>Density</subject><subject>Macroscopic equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimum entropy</subject><subject>Moment models</subject><subject>Strategy</subject><subject>Two dimensional</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGweWRJ8a5yICVXcpEowwGxc50S4xHZru0DfHldlZjq_zn8ZPoQuKakpoc31qjba1azImoia0O4ITWgru4pK2R6jCeFSVkQweYrOUloRQpqOigl6f9ExWz1WLjjwGTvrrdu6qugY1jvsQg9jwkOI-NN6yNZg8wEuZP1jE4bNVmcbfMLW4-ABa9_j_B1wb8ta2jvn6GTQY4KLvztFb_d3r_PHavH88DS_XVSGS56rTgvOOO9ayijVRncC5Ewa3S8HsRS9lg1rmoGWP-cDCNGTodUdE8xQ3Q7Lhk_R1WF3HcNmCykrZ5OBcdQewjYp2rKZaJqZbEuUHqImhpQiDGodrdNxpyhRe5pqpQpNtaepiFCFZuncHDqFBnxZiCoZC95AbyOYrPpg_2n_Ar9GfrQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Ritter, Juliane</creator><creator>Klar, Axel</creator><creator>Schneider, Florian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-8404</orcidid></search><sort><creationdate>201611</creationdate><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><author>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Chemotaxis</topic><topic>Computation</topic><topic>Density</topic><topic>Macroscopic equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimum entropy</topic><topic>Moment models</topic><topic>Strategy</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritter, Juliane</creatorcontrib><creatorcontrib>Klar, Axel</creatorcontrib><creatorcontrib>Schneider, Florian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritter, Juliane</au><au>Klar, Axel</au><au>Schneider, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-11</date><risdate>2016</risdate><volume>306</volume><spage>300</spage><epage>315</epage><pages>300-315</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.04.019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7052-8404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2016-11, Vol.306, p.300-315 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825466578 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Chemotaxis Computation Density Macroscopic equations Mathematical analysis Mathematical models Minimum entropy Moment models Strategy Two dimensional |
title | Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial-moment%20minimum-entropy%20models%20for%20kinetic%20chemotaxis%20equations%20in%20one%20and%20two%20dimensions&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Ritter,%20Juliane&rft.date=2016-11&rft.volume=306&rft.spage=300&rft.epage=315&rft.pages=300-315&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.04.019&rft_dat=%3Cproquest_cross%3E1825466578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825466578&rft_id=info:pmid/&rft_els_id=S0377042716301923&rfr_iscdi=true |