Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions

The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-11, Vol.306, p.300-315
Hauptverfasser: Ritter, Juliane, Klar, Axel, Schneider, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue
container_start_page 300
container_title Journal of computational and applied mathematics
container_volume 306
creator Ritter, Juliane
Klar, Axel
Schneider, Florian
description The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.
doi_str_mv 10.1016/j.cam.2016.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825466578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716301923</els_id><sourcerecordid>1825466578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGweWRJ8a5yICVXcpEowwGxc50S4xHZru0DfHldlZjq_zn8ZPoQuKakpoc31qjba1azImoia0O4ITWgru4pK2R6jCeFSVkQweYrOUloRQpqOigl6f9ExWz1WLjjwGTvrrdu6qugY1jvsQg9jwkOI-NN6yNZg8wEuZP1jE4bNVmcbfMLW4-ABa9_j_B1wb8ta2jvn6GTQY4KLvztFb_d3r_PHavH88DS_XVSGS56rTgvOOO9ayijVRncC5Ewa3S8HsRS9lg1rmoGWP-cDCNGTodUdE8xQ3Q7Lhk_R1WF3HcNmCykrZ5OBcdQewjYp2rKZaJqZbEuUHqImhpQiDGodrdNxpyhRe5pqpQpNtaepiFCFZuncHDqFBnxZiCoZC95AbyOYrPpg_2n_Ar9GfrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825466578</pqid></control><display><type>article</type><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</creator><creatorcontrib>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</creatorcontrib><description>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.04.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Chemotaxis ; Computation ; Density ; Macroscopic equations ; Mathematical analysis ; Mathematical models ; Minimum entropy ; Moment models ; Strategy ; Two dimensional</subject><ispartof>Journal of computational and applied mathematics, 2016-11, Vol.306, p.300-315</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</citedby><cites>FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</cites><orcidid>0000-0002-7052-8404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ritter, Juliane</creatorcontrib><creatorcontrib>Klar, Axel</creatorcontrib><creatorcontrib>Schneider, Florian</creatorcontrib><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><title>Journal of computational and applied mathematics</title><description>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</description><subject>Approximation</subject><subject>Chemotaxis</subject><subject>Computation</subject><subject>Density</subject><subject>Macroscopic equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimum entropy</subject><subject>Moment models</subject><subject>Strategy</subject><subject>Two dimensional</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGweWRJ8a5yICVXcpEowwGxc50S4xHZru0DfHldlZjq_zn8ZPoQuKakpoc31qjba1azImoia0O4ITWgru4pK2R6jCeFSVkQweYrOUloRQpqOigl6f9ExWz1WLjjwGTvrrdu6qugY1jvsQg9jwkOI-NN6yNZg8wEuZP1jE4bNVmcbfMLW4-ABa9_j_B1wb8ta2jvn6GTQY4KLvztFb_d3r_PHavH88DS_XVSGS56rTgvOOO9ayijVRncC5Ewa3S8HsRS9lg1rmoGWP-cDCNGTodUdE8xQ3Q7Lhk_R1WF3HcNmCykrZ5OBcdQewjYp2rKZaJqZbEuUHqImhpQiDGodrdNxpyhRe5pqpQpNtaepiFCFZuncHDqFBnxZiCoZC95AbyOYrPpg_2n_Ar9GfrQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Ritter, Juliane</creator><creator>Klar, Axel</creator><creator>Schneider, Florian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-8404</orcidid></search><sort><creationdate>201611</creationdate><title>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</title><author>Ritter, Juliane ; Klar, Axel ; Schneider, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9a43233981211aca94e757cadbf4b4da76266f1a9433fe44d0f8a9242c1a8fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Chemotaxis</topic><topic>Computation</topic><topic>Density</topic><topic>Macroscopic equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimum entropy</topic><topic>Moment models</topic><topic>Strategy</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritter, Juliane</creatorcontrib><creatorcontrib>Klar, Axel</creatorcontrib><creatorcontrib>Schneider, Florian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritter, Juliane</au><au>Klar, Axel</au><au>Schneider, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-11</date><risdate>2016</risdate><volume>306</volume><spage>300</spage><epage>315</epage><pages>300-315</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic equation for the cell densities we apply a half-/quarter-moments method with different closure relations to derive macroscopic equations. Appropriate numerical schemes are presented as well as numerical results for several test cases. The resulting solutions are compared to kinetic reference solutions and solutions computed using a full moment method with a linear superposition strategy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.04.019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7052-8404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-11, Vol.306, p.300-315
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1825466578
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Approximation
Chemotaxis
Computation
Density
Macroscopic equations
Mathematical analysis
Mathematical models
Minimum entropy
Moment models
Strategy
Two dimensional
title Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial-moment%20minimum-entropy%20models%20for%20kinetic%20chemotaxis%20equations%20in%20one%20and%20two%20dimensions&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Ritter,%20Juliane&rft.date=2016-11&rft.volume=306&rft.spage=300&rft.epage=315&rft.pages=300-315&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.04.019&rft_dat=%3Cproquest_cross%3E1825466578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825466578&rft_id=info:pmid/&rft_els_id=S0377042716301923&rfr_iscdi=true