High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells

We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (>97%) at the low sintering temperature of 800 °C. The microstructural analysis o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2016-07, Vol.320, p.267-273
Hauptverfasser: Joh, Dong Woo, Park, Jeong Hwa, Kim, Do Yeub, Yun, Byung-Hyun, Lee, Kang Taek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 267
container_title Journal of power sources
container_volume 320
creator Joh, Dong Woo
Park, Jeong Hwa
Kim, Do Yeub
Yun, Byung-Hyun
Lee, Kang Taek
description We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (>97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures. [Display omitted] •A novel nanostructured ESB-YSZ composite electrolyte is developed.•The nanocomposite electrolyte is sintered as low as 800 °C.•ESB-YSZ exhibits 5 times higher ionic conductivity than that of YSZ.•The high ionic conductivity is maintained for ∼600 h, demonstrating high stability.•Oxygen reduction reaction with ESB-YSZ is effectively enhanced by ∼70% compared to YSZ.
doi_str_mv 10.1016/j.jpowsour.2016.04.090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825465053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775316304633</els_id><sourcerecordid>1825465053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ad4d14cb56928ca81ea48377e017ddf969be62c5ed653e9d15da249886aa32ee3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF5eQbJ005o0zaU7ZVBHGHCj65BJTjVD29Sk9fb0Zhhduzoc-L-fcz6ELigpKaHialtux_CRwhzLKu8lqUvSkAO0oEqyopKcH6IFYVIVUnJ2jE5S2hJCKJVkgcLKv7ziEWIbYm8GC_jbRxsGb4qNT_08veLw6R3gwQzBhn4MyU-AoQM7xdB9TZBwRnEXPiDiCfpcZaY5Ak6h8-4XbmfosIWuS2foqDVdgvPfeYqe726flqti_Xj_sLxZF5YpMRXG1Y7WdsNFUylrFAVTKyYlECqdaxvRbEBUloMTnEHjKHemqhulhDGsAmCn6HLfO8bwNkOadO_T7gIzQJiTpqriteCEsxwV-6iNIaUIrR6j70380pTonWG91X-G9c6wJrXOhjN4vQchP_LuIepkPWSHzsesR7vg_6v4AUfvjFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825465053</pqid></control><display><type>article</type><title>High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Joh, Dong Woo ; Park, Jeong Hwa ; Kim, Do Yeub ; Yun, Byung-Hyun ; Lee, Kang Taek</creator><creatorcontrib>Joh, Dong Woo ; Park, Jeong Hwa ; Kim, Do Yeub ; Yun, Byung-Hyun ; Lee, Kang Taek</creatorcontrib><description>We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (&gt;97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures. [Display omitted] •A novel nanostructured ESB-YSZ composite electrolyte is developed.•The nanocomposite electrolyte is sintered as low as 800 °C.•ESB-YSZ exhibits 5 times higher ionic conductivity than that of YSZ.•The high ionic conductivity is maintained for ∼600 h, demonstrating high stability.•Oxygen reduction reaction with ESB-YSZ is effectively enhanced by ∼70% compared to YSZ.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2016.04.090</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bismuth oxide ; Electrolyte ; Electrolytes ; Grain boundaries ; Ionic conductivity ; Nanocomposite ; Nanocomposites ; Oxygen ; Reduction (electrolytic) ; Solid oxide fuel cells ; Surface chemistry ; Yttria stabilized zirconia ; Zirconia</subject><ispartof>Journal of power sources, 2016-07, Vol.320, p.267-273</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ad4d14cb56928ca81ea48377e017ddf969be62c5ed653e9d15da249886aa32ee3</citedby><cites>FETCH-LOGICAL-c386t-ad4d14cb56928ca81ea48377e017ddf969be62c5ed653e9d15da249886aa32ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775316304633$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Joh, Dong Woo</creatorcontrib><creatorcontrib>Park, Jeong Hwa</creatorcontrib><creatorcontrib>Kim, Do Yeub</creatorcontrib><creatorcontrib>Yun, Byung-Hyun</creatorcontrib><creatorcontrib>Lee, Kang Taek</creatorcontrib><title>High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells</title><title>Journal of power sources</title><description>We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (&gt;97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures. [Display omitted] •A novel nanostructured ESB-YSZ composite electrolyte is developed.•The nanocomposite electrolyte is sintered as low as 800 °C.•ESB-YSZ exhibits 5 times higher ionic conductivity than that of YSZ.•The high ionic conductivity is maintained for ∼600 h, demonstrating high stability.•Oxygen reduction reaction with ESB-YSZ is effectively enhanced by ∼70% compared to YSZ.</description><subject>Bismuth oxide</subject><subject>Electrolyte</subject><subject>Electrolytes</subject><subject>Grain boundaries</subject><subject>Ionic conductivity</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Oxygen</subject><subject>Reduction (electrolytic)</subject><subject>Solid oxide fuel cells</subject><subject>Surface chemistry</subject><subject>Yttria stabilized zirconia</subject><subject>Zirconia</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF5eQbJ005o0zaU7ZVBHGHCj65BJTjVD29Sk9fb0Zhhduzoc-L-fcz6ELigpKaHialtux_CRwhzLKu8lqUvSkAO0oEqyopKcH6IFYVIVUnJ2jE5S2hJCKJVkgcLKv7ziEWIbYm8GC_jbRxsGb4qNT_08veLw6R3gwQzBhn4MyU-AoQM7xdB9TZBwRnEXPiDiCfpcZaY5Ak6h8-4XbmfosIWuS2foqDVdgvPfeYqe726flqti_Xj_sLxZF5YpMRXG1Y7WdsNFUylrFAVTKyYlECqdaxvRbEBUloMTnEHjKHemqhulhDGsAmCn6HLfO8bwNkOadO_T7gIzQJiTpqriteCEsxwV-6iNIaUIrR6j70380pTonWG91X-G9c6wJrXOhjN4vQchP_LuIepkPWSHzsesR7vg_6v4AUfvjFs</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Joh, Dong Woo</creator><creator>Park, Jeong Hwa</creator><creator>Kim, Do Yeub</creator><creator>Yun, Byung-Hyun</creator><creator>Lee, Kang Taek</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160715</creationdate><title>High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells</title><author>Joh, Dong Woo ; Park, Jeong Hwa ; Kim, Do Yeub ; Yun, Byung-Hyun ; Lee, Kang Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ad4d14cb56928ca81ea48377e017ddf969be62c5ed653e9d15da249886aa32ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth oxide</topic><topic>Electrolyte</topic><topic>Electrolytes</topic><topic>Grain boundaries</topic><topic>Ionic conductivity</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Oxygen</topic><topic>Reduction (electrolytic)</topic><topic>Solid oxide fuel cells</topic><topic>Surface chemistry</topic><topic>Yttria stabilized zirconia</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joh, Dong Woo</creatorcontrib><creatorcontrib>Park, Jeong Hwa</creatorcontrib><creatorcontrib>Kim, Do Yeub</creatorcontrib><creatorcontrib>Yun, Byung-Hyun</creatorcontrib><creatorcontrib>Lee, Kang Taek</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joh, Dong Woo</au><au>Park, Jeong Hwa</au><au>Kim, Do Yeub</au><au>Yun, Byung-Hyun</au><au>Lee, Kang Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>320</volume><spage>267</spage><epage>273</epage><pages>267-273</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (&gt;97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures. [Display omitted] •A novel nanostructured ESB-YSZ composite electrolyte is developed.•The nanocomposite electrolyte is sintered as low as 800 °C.•ESB-YSZ exhibits 5 times higher ionic conductivity than that of YSZ.•The high ionic conductivity is maintained for ∼600 h, demonstrating high stability.•Oxygen reduction reaction with ESB-YSZ is effectively enhanced by ∼70% compared to YSZ.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2016.04.090</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2016-07, Vol.320, p.267-273
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1825465053
source Elsevier ScienceDirect Journals
subjects Bismuth oxide
Electrolyte
Electrolytes
Grain boundaries
Ionic conductivity
Nanocomposite
Nanocomposites
Oxygen
Reduction (electrolytic)
Solid oxide fuel cells
Surface chemistry
Yttria stabilized zirconia
Zirconia
title High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20zirconia-bismuth%20oxide%20nanocomposite%20electrolytes%20for%20lower%20temperature%20solid%20oxide%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Joh,%20Dong%20Woo&rft.date=2016-07-15&rft.volume=320&rft.spage=267&rft.epage=273&rft.pages=267-273&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2016.04.090&rft_dat=%3Cproquest_cross%3E1825465053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825465053&rft_id=info:pmid/&rft_els_id=S0378775316304633&rfr_iscdi=true