The dynamics of radiation-driven, optically thick winds

Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-06, Vol.459 (1), p.171-177
Hauptverfasser: Shen, Rong-Feng, Nakar, Ehud, Piran, Tsvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 171
container_title Monthly notices of the Royal Astronomical Society
container_volume 459
creator Shen, Rong-Feng
Nakar, Ehud
Piran, Tsvi
description Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes ( $\dot{M} > L_{\rm Edd}/c^2$ ). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, L k, are super-Eddington with L < L k and $L \propto L_{\rm k}^{1/3}$ . In the lower total luminosity regime, most of the energy is carried out by the radiation with L k < L ≈ L Edd. In a third, low mass-loss regime ( $\dot{M} < L_{\rm Edd}/c^2$ ), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.
doi_str_mv 10.1093/mnras/stw645
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825464547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw645</oup_id><sourcerecordid>4072961121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-3f519133922f514ae0c8042876fb71ac7c33fe44fdec2152770a53dc87cc34ca3</originalsourceid><addsrcrecordid>eNqN0DtPwzAUBWALgUR5bPyASAwwNNRvxyOqeEmVWMpsGcdWXRI72AlV_z2BMDEgpnuHT0c6B4ALBG8QlGTRhqTzIvc7TtkBmCHCWYkl54dgBiFhZSUQOgYnOW8hhJRgPgNivbFFvQ-69SYX0RVJ1173PoayTv7DhnkRu94b3TT7ot9481bsfKjzGThyusn2_Oeegpf7u_XysVw9Pzwtb1eloZz1JXEMSUSIxHj8qLbQVJDiSnD3KpA2whDiLKWutgYjhoWAmpHaVMIYQo0mp-B6yu1SfB9s7lXrs7FNo4ONQ1aowoyOdan4B4UV54ITPtLLX3QbhxTGIgoJiZmUUqBRzSdlUsw5Wae65Fud9gpB9TW4-h5cTYOP_Gricej-lp-Tg4Ee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792599971</pqid></control><display><type>article</type><title>The dynamics of radiation-driven, optically thick winds</title><source>Oxford Journals Open Access Collection</source><creator>Shen, Rong-Feng ; Nakar, Ehud ; Piran, Tsvi</creator><creatorcontrib>Shen, Rong-Feng ; Nakar, Ehud ; Piran, Tsvi</creatorcontrib><description>Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes ( $\dot{M} &gt; L_{\rm Edd}/c^2$ ). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, L k, are super-Eddington with L &lt; L k and $L \propto L_{\rm k}^{1/3}$ . In the lower total luminosity regime, most of the energy is carried out by the radiation with L k &lt; L ≈ L Edd. In a third, low mass-loss regime ( $\dot{M} &lt; L_{\rm Edd}/c^2$ ), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw645</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Accretion ; Accretion disks ; Adiabatic flow ; Black holes ; Dynamics ; Kinetics ; Luminosity ; Nebulae ; Photons ; Radiation ; Sonics ; Stellar winds ; Symbols</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-06, Vol.459 (1), p.171-177</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Jun 11, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-3f519133922f514ae0c8042876fb71ac7c33fe44fdec2152770a53dc87cc34ca3</citedby><cites>FETCH-LOGICAL-c465t-3f519133922f514ae0c8042876fb71ac7c33fe44fdec2152770a53dc87cc34ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw645$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Shen, Rong-Feng</creatorcontrib><creatorcontrib>Nakar, Ehud</creatorcontrib><creatorcontrib>Piran, Tsvi</creatorcontrib><title>The dynamics of radiation-driven, optically thick winds</title><title>Monthly notices of the Royal Astronomical Society</title><description>Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes ( $\dot{M} &gt; L_{\rm Edd}/c^2$ ). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, L k, are super-Eddington with L &lt; L k and $L \propto L_{\rm k}^{1/3}$ . In the lower total luminosity regime, most of the energy is carried out by the radiation with L k &lt; L ≈ L Edd. In a third, low mass-loss regime ( $\dot{M} &lt; L_{\rm Edd}/c^2$ ), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.</description><subject>Accretion</subject><subject>Accretion disks</subject><subject>Adiabatic flow</subject><subject>Black holes</subject><subject>Dynamics</subject><subject>Kinetics</subject><subject>Luminosity</subject><subject>Nebulae</subject><subject>Photons</subject><subject>Radiation</subject><subject>Sonics</subject><subject>Stellar winds</subject><subject>Symbols</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0DtPwzAUBWALgUR5bPyASAwwNNRvxyOqeEmVWMpsGcdWXRI72AlV_z2BMDEgpnuHT0c6B4ALBG8QlGTRhqTzIvc7TtkBmCHCWYkl54dgBiFhZSUQOgYnOW8hhJRgPgNivbFFvQ-69SYX0RVJ1173PoayTv7DhnkRu94b3TT7ot9481bsfKjzGThyusn2_Oeegpf7u_XysVw9Pzwtb1eloZz1JXEMSUSIxHj8qLbQVJDiSnD3KpA2whDiLKWutgYjhoWAmpHaVMIYQo0mp-B6yu1SfB9s7lXrs7FNo4ONQ1aowoyOdan4B4UV54ITPtLLX3QbhxTGIgoJiZmUUqBRzSdlUsw5Wae65Fud9gpB9TW4-h5cTYOP_Gricej-lp-Tg4Ee</recordid><startdate>20160611</startdate><enddate>20160611</enddate><creator>Shen, Rong-Feng</creator><creator>Nakar, Ehud</creator><creator>Piran, Tsvi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160611</creationdate><title>The dynamics of radiation-driven, optically thick winds</title><author>Shen, Rong-Feng ; Nakar, Ehud ; Piran, Tsvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-3f519133922f514ae0c8042876fb71ac7c33fe44fdec2152770a53dc87cc34ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion</topic><topic>Accretion disks</topic><topic>Adiabatic flow</topic><topic>Black holes</topic><topic>Dynamics</topic><topic>Kinetics</topic><topic>Luminosity</topic><topic>Nebulae</topic><topic>Photons</topic><topic>Radiation</topic><topic>Sonics</topic><topic>Stellar winds</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Rong-Feng</creatorcontrib><creatorcontrib>Nakar, Ehud</creatorcontrib><creatorcontrib>Piran, Tsvi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Rong-Feng</au><au>Nakar, Ehud</au><au>Piran, Tsvi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of radiation-driven, optically thick winds</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-06-11</date><risdate>2016</risdate><volume>459</volume><issue>1</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes ( $\dot{M} &gt; L_{\rm Edd}/c^2$ ). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, L k, are super-Eddington with L &lt; L k and $L \propto L_{\rm k}^{1/3}$ . In the lower total luminosity regime, most of the energy is carried out by the radiation with L k &lt; L ≈ L Edd. In a third, low mass-loss regime ( $\dot{M} &lt; L_{\rm Edd}/c^2$ ), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw645</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2016-06, Vol.459 (1), p.171-177
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1825464547
source Oxford Journals Open Access Collection
subjects Accretion
Accretion disks
Adiabatic flow
Black holes
Dynamics
Kinetics
Luminosity
Nebulae
Photons
Radiation
Sonics
Stellar winds
Symbols
title The dynamics of radiation-driven, optically thick winds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20radiation-driven,%20optically%20thick%20winds&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Shen,%20Rong-Feng&rft.date=2016-06-11&rft.volume=459&rft.issue=1&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw645&rft_dat=%3Cproquest_TOX%3E4072961121%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792599971&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw645&rfr_iscdi=true