Experimental control of optical helicity in nanophotonics

An analysis of light–matter interactions based on symmetries can provide valuable insight, particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system. In this context, helicity can be a useful addition to more commonly considered observa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2014-06, Vol.3 (6), p.e183-e183
Hauptverfasser: Tischler, Nora, Fernandez-Corbaton, Ivan, Zambrana-Puyalto, Xavier, Minovich, Alexander, Vidal, Xavier, Juan, Mathieu L, Molina-Terriza, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e183
container_issue 6
container_start_page e183
container_title Light, science & applications
container_volume 3
creator Tischler, Nora
Fernandez-Corbaton, Ivan
Zambrana-Puyalto, Xavier
Minovich, Alexander
Vidal, Xavier
Juan, Mathieu L
Molina-Terriza, Gabriel
description An analysis of light–matter interactions based on symmetries can provide valuable insight, particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system. In this context, helicity can be a useful addition to more commonly considered observables such as angular momentum. The question arises how to treat helicity, the projection of the total angular momentum onto the linear momentum direction, in practical experiments. In this paper, we put forward a simple but versatile experimental treatment of helicity. We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film. This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures. In particular, we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component. Light beams: helicity control Researchers in Australia have developed a way to control the helicity of a light beam in nanophotonics. Helicity – the projection of a beam's total angular momentum onto the direction of its linear momentum – is a useful parameter for explaining light-matter interactions. Nora Tischler and co-workers first passed collimated red laser light through a polarizer and a quarter-waveplate to create left-circularly polarized light with a helicity of +1. They then focused the light through a thin piece of gold-coated glass containing a nanoaperture of diameter 100–600 nm. Interaction with the nanostructure caused some of the light to transform into a beam with a helicity of −1, as analysed by polarization optics and a CCD camera. The amount converted depended on the diameter of the aperture.
doi_str_mv 10.1038/lsa.2014.64
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825464529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825464529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-33e298cfc70cb6fb792f74f8593ab66bd91f39589e28d3d68fa255aa344cbbef3</originalsourceid><addsrcrecordid>eNpt0EtLAzEQB_AgCpbak19gwYugW_PaPI5S6gMKXvQcsmlit2yTNcmC_fam1EMR5zLD8GMY_gBcIzhHkIiHPuk5hojOGT0DEwwpr3lDxPnJfAlmKW1hKUkRFHwC5PJ7sLHbWZ91X5ngcwx9FVwVhtyZstrYvjNd3ledr7z2YdiEHHxn0hW4cLpPdvbbp-Djafm-eKlXb8-vi8dVbQgTuSbEYimMMxyalrmWS-w4daKRRLeMtWuJHJGNkBaLNVkz4TRuGq0JpaZtrSNTcHu8O8TwNdqU1a5Lxva99jaMSSGBG8pog2WhN3_oNozRl-8U4pJQzAXFRd0dlYkhpWidGkoAOu4VguqQpCpJqkOSitGi7486FeU_bTy5-Q__ASQedL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793427842</pqid></control><display><type>article</type><title>Experimental control of optical helicity in nanophotonics</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tischler, Nora ; Fernandez-Corbaton, Ivan ; Zambrana-Puyalto, Xavier ; Minovich, Alexander ; Vidal, Xavier ; Juan, Mathieu L ; Molina-Terriza, Gabriel</creator><creatorcontrib>Tischler, Nora ; Fernandez-Corbaton, Ivan ; Zambrana-Puyalto, Xavier ; Minovich, Alexander ; Vidal, Xavier ; Juan, Mathieu L ; Molina-Terriza, Gabriel</creatorcontrib><description>An analysis of light–matter interactions based on symmetries can provide valuable insight, particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system. In this context, helicity can be a useful addition to more commonly considered observables such as angular momentum. The question arises how to treat helicity, the projection of the total angular momentum onto the linear momentum direction, in practical experiments. In this paper, we put forward a simple but versatile experimental treatment of helicity. We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film. This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures. In particular, we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component. Light beams: helicity control Researchers in Australia have developed a way to control the helicity of a light beam in nanophotonics. Helicity – the projection of a beam's total angular momentum onto the direction of its linear momentum – is a useful parameter for explaining light-matter interactions. Nora Tischler and co-workers first passed collimated red laser light through a polarizer and a quarter-waveplate to create left-circularly polarized light with a helicity of +1. They then focused the light through a thin piece of gold-coated glass containing a nanoaperture of diameter 100–600 nm. Interaction with the nanostructure caused some of the light to transform into a beam with a helicity of −1, as analysed by polarization optics and a CCD camera. The amount converted depended on the diameter of the aperture.</description><identifier>ISSN: 2047-7538</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/lsa.2014.64</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400 ; 639/624/400/1021 ; Angular momentum ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Gold ; Helicity ; Lasers ; Molecular ; Nanostructure ; Optical and Plasma Physics ; Optical Devices ; Optics ; original-article ; Photonics ; Physics ; Physics and Astronomy ; Projection ; Scattering ; Symmetry ; Transformations</subject><ispartof>Light, science &amp; applications, 2014-06, Vol.3 (6), p.e183-e183</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-33e298cfc70cb6fb792f74f8593ab66bd91f39589e28d3d68fa255aa344cbbef3</citedby><cites>FETCH-LOGICAL-c368t-33e298cfc70cb6fb792f74f8593ab66bd91f39589e28d3d68fa255aa344cbbef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/lsa.2014.64$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/lsa.2014.64$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Tischler, Nora</creatorcontrib><creatorcontrib>Fernandez-Corbaton, Ivan</creatorcontrib><creatorcontrib>Zambrana-Puyalto, Xavier</creatorcontrib><creatorcontrib>Minovich, Alexander</creatorcontrib><creatorcontrib>Vidal, Xavier</creatorcontrib><creatorcontrib>Juan, Mathieu L</creatorcontrib><creatorcontrib>Molina-Terriza, Gabriel</creatorcontrib><title>Experimental control of optical helicity in nanophotonics</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><description>An analysis of light–matter interactions based on symmetries can provide valuable insight, particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system. In this context, helicity can be a useful addition to more commonly considered observables such as angular momentum. The question arises how to treat helicity, the projection of the total angular momentum onto the linear momentum direction, in practical experiments. In this paper, we put forward a simple but versatile experimental treatment of helicity. We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film. This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures. In particular, we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component. Light beams: helicity control Researchers in Australia have developed a way to control the helicity of a light beam in nanophotonics. Helicity – the projection of a beam's total angular momentum onto the direction of its linear momentum – is a useful parameter for explaining light-matter interactions. Nora Tischler and co-workers first passed collimated red laser light through a polarizer and a quarter-waveplate to create left-circularly polarized light with a helicity of +1. They then focused the light through a thin piece of gold-coated glass containing a nanoaperture of diameter 100–600 nm. Interaction with the nanostructure caused some of the light to transform into a beam with a helicity of −1, as analysed by polarization optics and a CCD camera. The amount converted depended on the diameter of the aperture.</description><subject>639/624/400</subject><subject>639/624/400/1021</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Gold</subject><subject>Helicity</subject><subject>Lasers</subject><subject>Molecular</subject><subject>Nanostructure</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>original-article</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Projection</subject><subject>Scattering</subject><subject>Symmetry</subject><subject>Transformations</subject><issn>2047-7538</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0EtLAzEQB_AgCpbak19gwYugW_PaPI5S6gMKXvQcsmlit2yTNcmC_fam1EMR5zLD8GMY_gBcIzhHkIiHPuk5hojOGT0DEwwpr3lDxPnJfAlmKW1hKUkRFHwC5PJ7sLHbWZ91X5ngcwx9FVwVhtyZstrYvjNd3ledr7z2YdiEHHxn0hW4cLpPdvbbp-Djafm-eKlXb8-vi8dVbQgTuSbEYimMMxyalrmWS-w4daKRRLeMtWuJHJGNkBaLNVkz4TRuGq0JpaZtrSNTcHu8O8TwNdqU1a5Lxva99jaMSSGBG8pog2WhN3_oNozRl-8U4pJQzAXFRd0dlYkhpWidGkoAOu4VguqQpCpJqkOSitGi7486FeU_bTy5-Q__ASQedL8</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Tischler, Nora</creator><creator>Fernandez-Corbaton, Ivan</creator><creator>Zambrana-Puyalto, Xavier</creator><creator>Minovich, Alexander</creator><creator>Vidal, Xavier</creator><creator>Juan, Mathieu L</creator><creator>Molina-Terriza, Gabriel</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Experimental control of optical helicity in nanophotonics</title><author>Tischler, Nora ; Fernandez-Corbaton, Ivan ; Zambrana-Puyalto, Xavier ; Minovich, Alexander ; Vidal, Xavier ; Juan, Mathieu L ; Molina-Terriza, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-33e298cfc70cb6fb792f74f8593ab66bd91f39589e28d3d68fa255aa344cbbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/400</topic><topic>639/624/400/1021</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Gold</topic><topic>Helicity</topic><topic>Lasers</topic><topic>Molecular</topic><topic>Nanostructure</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>original-article</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Projection</topic><topic>Scattering</topic><topic>Symmetry</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tischler, Nora</creatorcontrib><creatorcontrib>Fernandez-Corbaton, Ivan</creatorcontrib><creatorcontrib>Zambrana-Puyalto, Xavier</creatorcontrib><creatorcontrib>Minovich, Alexander</creatorcontrib><creatorcontrib>Vidal, Xavier</creatorcontrib><creatorcontrib>Juan, Mathieu L</creatorcontrib><creatorcontrib>Molina-Terriza, Gabriel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tischler, Nora</au><au>Fernandez-Corbaton, Ivan</au><au>Zambrana-Puyalto, Xavier</au><au>Minovich, Alexander</au><au>Vidal, Xavier</au><au>Juan, Mathieu L</au><au>Molina-Terriza, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental control of optical helicity in nanophotonics</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>3</volume><issue>6</issue><spage>e183</spage><epage>e183</epage><pages>e183-e183</pages><issn>2047-7538</issn><eissn>2047-7538</eissn><abstract>An analysis of light–matter interactions based on symmetries can provide valuable insight, particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system. In this context, helicity can be a useful addition to more commonly considered observables such as angular momentum. The question arises how to treat helicity, the projection of the total angular momentum onto the linear momentum direction, in practical experiments. In this paper, we put forward a simple but versatile experimental treatment of helicity. We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film. This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures. In particular, we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component. Light beams: helicity control Researchers in Australia have developed a way to control the helicity of a light beam in nanophotonics. Helicity – the projection of a beam's total angular momentum onto the direction of its linear momentum – is a useful parameter for explaining light-matter interactions. Nora Tischler and co-workers first passed collimated red laser light through a polarizer and a quarter-waveplate to create left-circularly polarized light with a helicity of +1. They then focused the light through a thin piece of gold-coated glass containing a nanoaperture of diameter 100–600 nm. Interaction with the nanostructure caused some of the light to transform into a beam with a helicity of −1, as analysed by polarization optics and a CCD camera. The amount converted depended on the diameter of the aperture.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/lsa.2014.64</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2014-06, Vol.3 (6), p.e183-e183
issn 2047-7538
2047-7538
language eng
recordid cdi_proquest_miscellaneous_1825464529
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/624/400
639/624/400/1021
Angular momentum
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Gold
Helicity
Lasers
Molecular
Nanostructure
Optical and Plasma Physics
Optical Devices
Optics
original-article
Photonics
Physics
Physics and Astronomy
Projection
Scattering
Symmetry
Transformations
title Experimental control of optical helicity in nanophotonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20control%20of%20optical%20helicity%20in%20nanophotonics&rft.jtitle=Light,%20science%20&%20applications&rft.au=Tischler,%20Nora&rft.date=2014-06-01&rft.volume=3&rft.issue=6&rft.spage=e183&rft.epage=e183&rft.pages=e183-e183&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/lsa.2014.64&rft_dat=%3Cproquest_cross%3E1825464529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793427842&rft_id=info:pmid/&rfr_iscdi=true