Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation
The linear stability of a Darcy flow through an infinitely wide horizontal channel is here investigated. In particular, the paper is focused on the onset of thermal convection through a convective instability. The Oberbeck–Boussinesq approximation is employed to model the buoyancy term inside Darcy’...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2016-04, Vol.112 (3), p.563-575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 3 |
container_start_page | 563 |
container_title | Transport in porous media |
container_volume | 112 |
creator | Celli, Michele Brandao, Pedro V. Alves, Leonardo S. de B. Barletta, Antonio |
description | The linear stability of a Darcy flow through an infinitely wide horizontal channel is here investigated. In particular, the paper is focused on the onset of thermal convection through a convective instability. The Oberbeck–Boussinesq approximation is employed to model the buoyancy term inside Darcy’s law. The channel is impermeable and heated from below by an isoflux condition. A uniform internal heat source is imposed. A steady solution is found and used as basic state for the stability analysis. This basic state is composed of a pressure gradient term and a buoyancy force term. The rotation symmetry around the vertical axis allows an important simplification: the two-dimensional case is treated here instead of the full three-dimensional case without any loss of generality. The normal modes method is employed to perform the linear stability analysis. The resulting eigenvalue problem is solved analytically for vanishing wavenumbers and numerically otherwise. Analytical solutions are used to validate the numerical procedure. Critical Rayleigh numbers for the onset of thermal convection prove that the most unstable modes are longitudinal. Temporal growth rates for longitudinal modes are calculated under slightly supercritical conditions to identify the fundamental characteristics of the most dominant mode which will be observed in experimental or numerical simulations under the same parametric conditions. |
doi_str_mv | 10.1007/s11242-016-0658-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825464204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825464204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-159b307932f91101a020b8fa8dac3b90ac3f4a9c2b49b8f76b0b2a0e49ccb3fd3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAi5dovvYjR632Awpe1GtI0qymbDc1SS3992ZdQRC8zMDM8wzDC8AlwTcE4-o2EkI5RZiUCJdFjegRGJGiYoiUjB-DUV4IxARhp-AsxjXG2ar5CLxOfPdpTXKfFi66mJR2rUsH6Dqo4IMK5gCnrd_DuVXJrmAT_Abe236yd-k9K8mGTrXfeziznQ0qOd-dg5NGtdFe_PQxeJk-Pk_maPk0W0zulkixiiZECqEZrgSjjSAEE4Up1nWj6pUyTAuca8OVMFRzkedVqbGmClsujNGsWbExuB7uboP_2NmY5MZFY9tWddbvoiQ1LXjJKeYZvfqDrv2u_z1KyjgvWJ3ZTJGBMsHHGGwjt8FtVDhIgmWftBySljlQ2Sed5TGggxMz273Z8Hv5f-kLIdx_0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344538825</pqid></control><display><type>article</type><title>Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Celli, Michele ; Brandao, Pedro V. ; Alves, Leonardo S. de B. ; Barletta, Antonio</creator><creatorcontrib>Celli, Michele ; Brandao, Pedro V. ; Alves, Leonardo S. de B. ; Barletta, Antonio</creatorcontrib><description>The linear stability of a Darcy flow through an infinitely wide horizontal channel is here investigated. In particular, the paper is focused on the onset of thermal convection through a convective instability. The Oberbeck–Boussinesq approximation is employed to model the buoyancy term inside Darcy’s law. The channel is impermeable and heated from below by an isoflux condition. A uniform internal heat source is imposed. A steady solution is found and used as basic state for the stability analysis. This basic state is composed of a pressure gradient term and a buoyancy force term. The rotation symmetry around the vertical axis allows an important simplification: the two-dimensional case is treated here instead of the full three-dimensional case without any loss of generality. The normal modes method is employed to perform the linear stability analysis. The resulting eigenvalue problem is solved analytically for vanishing wavenumbers and numerically otherwise. Analytical solutions are used to validate the numerical procedure. Critical Rayleigh numbers for the onset of thermal convection prove that the most unstable modes are longitudinal. Temporal growth rates for longitudinal modes are calculated under slightly supercritical conditions to identify the fundamental characteristics of the most dominant mode which will be observed in experimental or numerical simulations under the same parametric conditions.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-016-0658-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boussinesq approximation ; Buoyancy ; Channels ; Civil Engineering ; Classical and Continuum Physics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Eigenvalues ; Exact solutions ; Flow stability ; Free convection ; Geotechnical Engineering & Applied Earth Sciences ; Heat generation ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Instability ; Mathematical analysis ; Mathematical models ; Stability ; Stability analysis</subject><ispartof>Transport in porous media, 2016-04, Vol.112 (3), p.563-575</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Transport in Porous Media is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-159b307932f91101a020b8fa8dac3b90ac3f4a9c2b49b8f76b0b2a0e49ccb3fd3</citedby><cites>FETCH-LOGICAL-a372t-159b307932f91101a020b8fa8dac3b90ac3f4a9c2b49b8f76b0b2a0e49ccb3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-016-0658-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-016-0658-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Celli, Michele</creatorcontrib><creatorcontrib>Brandao, Pedro V.</creatorcontrib><creatorcontrib>Alves, Leonardo S. de B.</creatorcontrib><creatorcontrib>Barletta, Antonio</creatorcontrib><title>Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The linear stability of a Darcy flow through an infinitely wide horizontal channel is here investigated. In particular, the paper is focused on the onset of thermal convection through a convective instability. The Oberbeck–Boussinesq approximation is employed to model the buoyancy term inside Darcy’s law. The channel is impermeable and heated from below by an isoflux condition. A uniform internal heat source is imposed. A steady solution is found and used as basic state for the stability analysis. This basic state is composed of a pressure gradient term and a buoyancy force term. The rotation symmetry around the vertical axis allows an important simplification: the two-dimensional case is treated here instead of the full three-dimensional case without any loss of generality. The normal modes method is employed to perform the linear stability analysis. The resulting eigenvalue problem is solved analytically for vanishing wavenumbers and numerically otherwise. Analytical solutions are used to validate the numerical procedure. Critical Rayleigh numbers for the onset of thermal convection prove that the most unstable modes are longitudinal. Temporal growth rates for longitudinal modes are calculated under slightly supercritical conditions to identify the fundamental characteristics of the most dominant mode which will be observed in experimental or numerical simulations under the same parametric conditions.</description><subject>Boussinesq approximation</subject><subject>Buoyancy</subject><subject>Channels</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eigenvalues</subject><subject>Exact solutions</subject><subject>Flow stability</subject><subject>Free convection</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Heat generation</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Stability</subject><subject>Stability analysis</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAi5dovvYjR632Awpe1GtI0qymbDc1SS3992ZdQRC8zMDM8wzDC8AlwTcE4-o2EkI5RZiUCJdFjegRGJGiYoiUjB-DUV4IxARhp-AsxjXG2ar5CLxOfPdpTXKfFi66mJR2rUsH6Dqo4IMK5gCnrd_DuVXJrmAT_Abe236yd-k9K8mGTrXfeziznQ0qOd-dg5NGtdFe_PQxeJk-Pk_maPk0W0zulkixiiZECqEZrgSjjSAEE4Up1nWj6pUyTAuca8OVMFRzkedVqbGmClsujNGsWbExuB7uboP_2NmY5MZFY9tWddbvoiQ1LXjJKeYZvfqDrv2u_z1KyjgvWJ3ZTJGBMsHHGGwjt8FtVDhIgmWftBySljlQ2Sed5TGggxMz273Z8Hv5f-kLIdx_0Q</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Celli, Michele</creator><creator>Brandao, Pedro V.</creator><creator>Alves, Leonardo S. de B.</creator><creator>Barletta, Antonio</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160401</creationdate><title>Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation</title><author>Celli, Michele ; Brandao, Pedro V. ; Alves, Leonardo S. de B. ; Barletta, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-159b307932f91101a020b8fa8dac3b90ac3f4a9c2b49b8f76b0b2a0e49ccb3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boussinesq approximation</topic><topic>Buoyancy</topic><topic>Channels</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eigenvalues</topic><topic>Exact solutions</topic><topic>Flow stability</topic><topic>Free convection</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Heat generation</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celli, Michele</creatorcontrib><creatorcontrib>Brandao, Pedro V.</creatorcontrib><creatorcontrib>Alves, Leonardo S. de B.</creatorcontrib><creatorcontrib>Barletta, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celli, Michele</au><au>Brandao, Pedro V.</au><au>Alves, Leonardo S. de B.</au><au>Barletta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>112</volume><issue>3</issue><spage>563</spage><epage>575</epage><pages>563-575</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The linear stability of a Darcy flow through an infinitely wide horizontal channel is here investigated. In particular, the paper is focused on the onset of thermal convection through a convective instability. The Oberbeck–Boussinesq approximation is employed to model the buoyancy term inside Darcy’s law. The channel is impermeable and heated from below by an isoflux condition. A uniform internal heat source is imposed. A steady solution is found and used as basic state for the stability analysis. This basic state is composed of a pressure gradient term and a buoyancy force term. The rotation symmetry around the vertical axis allows an important simplification: the two-dimensional case is treated here instead of the full three-dimensional case without any loss of generality. The normal modes method is employed to perform the linear stability analysis. The resulting eigenvalue problem is solved analytically for vanishing wavenumbers and numerically otherwise. Analytical solutions are used to validate the numerical procedure. Critical Rayleigh numbers for the onset of thermal convection prove that the most unstable modes are longitudinal. Temporal growth rates for longitudinal modes are calculated under slightly supercritical conditions to identify the fundamental characteristics of the most dominant mode which will be observed in experimental or numerical simulations under the same parametric conditions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-016-0658-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2016-04, Vol.112 (3), p.563-575 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825464204 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boussinesq approximation Buoyancy Channels Civil Engineering Classical and Continuum Physics Computer simulation Earth and Environmental Science Earth Sciences Eigenvalues Exact solutions Flow stability Free convection Geotechnical Engineering & Applied Earth Sciences Heat generation Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Instability Mathematical analysis Mathematical models Stability Stability analysis |
title | Convective Instability in a Darcy Flow Heated from Below with Internal Heat Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20Instability%20in%20a%20Darcy%20Flow%20Heated%20from%20Below%20with%20Internal%20Heat%20Generation&rft.jtitle=Transport%20in%20porous%20media&rft.au=Celli,%20Michele&rft.date=2016-04-01&rft.volume=112&rft.issue=3&rft.spage=563&rft.epage=575&rft.pages=563-575&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-016-0658-2&rft_dat=%3Cproquest_cross%3E1825464204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344538825&rft_id=info:pmid/&rfr_iscdi=true |