Self-consistent T-matrix approach to Bose-glass in one dimension
Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2016-01, Vol.397, p.11-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 397 |
creator | Yashenkin, A.G. Utesov, O.I. Sizanov, A.V. Syromyatnikov, A.V. |
description | Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory. |
doi_str_mv | 10.1016/j.jmmm.2015.08.068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825462880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885315304923</els_id><sourcerecordid>1825462880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</originalsourceid><addsrcrecordid>eNp9kD1PwzAURT2ARCn8AaaMLAnPduI4EgNQ8SVVYqDMlu28gKMkLraL4N-TqsxMd7nn6d1DyAWFggIVV33Rj-NYMKBVAbIAIY_IAjiUuZQVPyGnMfYAQEspFuTmFYcut36KLiacUrbJR52C-870dhu8th9Z8tmdj5i_DzrGzE2ZnzBr3Ygz46czctzpIeL5Xy7J28P9ZvWUr18en1e369zyuk45GsErjdwCWBClKQUa0zS6a5nQRlbSlLytNW-okbqRtalFR9vONpw1rKkpX5LLw935q88dxqRGFy0Og57Q76KiklWlYFLCXGWHqg0-xoCd2gY36vCjKKi9ItWrvSK1V6RAqlnRDF0fIJxHfDkMKlqHk8XWBbRJtd79h_8C-eZxlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825462880</pqid></control><display><type>article</type><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</creator><creatorcontrib>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</creatorcontrib><description>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2015.08.068</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Bose-glass ; Bosons ; Disorder ; Disorders ; Fluids ; Insulators ; Magnetism ; Mathematical analysis ; Quantum phase transitions ; Self-consistent T-matrix approximation ; Strength</subject><ispartof>Journal of magnetism and magnetic materials, 2016-01, Vol.397, p.11-19</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</citedby><cites>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2015.08.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yashenkin, A.G.</creatorcontrib><creatorcontrib>Utesov, O.I.</creatorcontrib><creatorcontrib>Sizanov, A.V.</creatorcontrib><creatorcontrib>Syromyatnikov, A.V.</creatorcontrib><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><title>Journal of magnetism and magnetic materials</title><description>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</description><subject>Approximation</subject><subject>Bose-glass</subject><subject>Bosons</subject><subject>Disorder</subject><subject>Disorders</subject><subject>Fluids</subject><subject>Insulators</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Quantum phase transitions</subject><subject>Self-consistent T-matrix approximation</subject><subject>Strength</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURT2ARCn8AaaMLAnPduI4EgNQ8SVVYqDMlu28gKMkLraL4N-TqsxMd7nn6d1DyAWFggIVV33Rj-NYMKBVAbIAIY_IAjiUuZQVPyGnMfYAQEspFuTmFYcut36KLiacUrbJR52C-870dhu8th9Z8tmdj5i_DzrGzE2ZnzBr3Ygz46czctzpIeL5Xy7J28P9ZvWUr18en1e369zyuk45GsErjdwCWBClKQUa0zS6a5nQRlbSlLytNW-okbqRtalFR9vONpw1rKkpX5LLw935q88dxqRGFy0Og57Q76KiklWlYFLCXGWHqg0-xoCd2gY36vCjKKi9ItWrvSK1V6RAqlnRDF0fIJxHfDkMKlqHk8XWBbRJtd79h_8C-eZxlg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yashenkin, A.G.</creator><creator>Utesov, O.I.</creator><creator>Sizanov, A.V.</creator><creator>Syromyatnikov, A.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><author>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bose-glass</topic><topic>Bosons</topic><topic>Disorder</topic><topic>Disorders</topic><topic>Fluids</topic><topic>Insulators</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Quantum phase transitions</topic><topic>Self-consistent T-matrix approximation</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yashenkin, A.G.</creatorcontrib><creatorcontrib>Utesov, O.I.</creatorcontrib><creatorcontrib>Sizanov, A.V.</creatorcontrib><creatorcontrib>Syromyatnikov, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yashenkin, A.G.</au><au>Utesov, O.I.</au><au>Sizanov, A.V.</au><au>Syromyatnikov, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent T-matrix approach to Bose-glass in one dimension</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>397</volume><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0304-8853</issn><abstract>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2015.08.068</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2016-01, Vol.397, p.11-19 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825462880 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Approximation Bose-glass Bosons Disorder Disorders Fluids Insulators Magnetism Mathematical analysis Quantum phase transitions Self-consistent T-matrix approximation Strength |
title | Self-consistent T-matrix approach to Bose-glass in one dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20T-matrix%20approach%20to%20Bose-glass%20in%20one%20dimension&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Yashenkin,%20A.G.&rft.date=2016-01-01&rft.volume=397&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2015.08.068&rft_dat=%3Cproquest_cross%3E1825462880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825462880&rft_id=info:pmid/&rft_els_id=S0304885315304923&rfr_iscdi=true |