Self-consistent T-matrix approach to Bose-glass in one dimension

Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2016-01, Vol.397, p.11-19
Hauptverfasser: Yashenkin, A.G., Utesov, O.I., Sizanov, A.V., Syromyatnikov, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 11
container_title Journal of magnetism and magnetic materials
container_volume 397
creator Yashenkin, A.G.
Utesov, O.I.
Sizanov, A.V.
Syromyatnikov, A.V.
description Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.
doi_str_mv 10.1016/j.jmmm.2015.08.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825462880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885315304923</els_id><sourcerecordid>1825462880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</originalsourceid><addsrcrecordid>eNp9kD1PwzAURT2ARCn8AaaMLAnPduI4EgNQ8SVVYqDMlu28gKMkLraL4N-TqsxMd7nn6d1DyAWFggIVV33Rj-NYMKBVAbIAIY_IAjiUuZQVPyGnMfYAQEspFuTmFYcut36KLiacUrbJR52C-870dhu8th9Z8tmdj5i_DzrGzE2ZnzBr3Ygz46czctzpIeL5Xy7J28P9ZvWUr18en1e369zyuk45GsErjdwCWBClKQUa0zS6a5nQRlbSlLytNW-okbqRtalFR9vONpw1rKkpX5LLw935q88dxqRGFy0Og57Q76KiklWlYFLCXGWHqg0-xoCd2gY36vCjKKi9ItWrvSK1V6RAqlnRDF0fIJxHfDkMKlqHk8XWBbRJtd79h_8C-eZxlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825462880</pqid></control><display><type>article</type><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</creator><creatorcontrib>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</creatorcontrib><description>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2015.08.068</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Bose-glass ; Bosons ; Disorder ; Disorders ; Fluids ; Insulators ; Magnetism ; Mathematical analysis ; Quantum phase transitions ; Self-consistent T-matrix approximation ; Strength</subject><ispartof>Journal of magnetism and magnetic materials, 2016-01, Vol.397, p.11-19</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</citedby><cites>FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2015.08.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yashenkin, A.G.</creatorcontrib><creatorcontrib>Utesov, O.I.</creatorcontrib><creatorcontrib>Sizanov, A.V.</creatorcontrib><creatorcontrib>Syromyatnikov, A.V.</creatorcontrib><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><title>Journal of magnetism and magnetic materials</title><description>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</description><subject>Approximation</subject><subject>Bose-glass</subject><subject>Bosons</subject><subject>Disorder</subject><subject>Disorders</subject><subject>Fluids</subject><subject>Insulators</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Quantum phase transitions</subject><subject>Self-consistent T-matrix approximation</subject><subject>Strength</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURT2ARCn8AaaMLAnPduI4EgNQ8SVVYqDMlu28gKMkLraL4N-TqsxMd7nn6d1DyAWFggIVV33Rj-NYMKBVAbIAIY_IAjiUuZQVPyGnMfYAQEspFuTmFYcut36KLiacUrbJR52C-870dhu8th9Z8tmdj5i_DzrGzE2ZnzBr3Ygz46czctzpIeL5Xy7J28P9ZvWUr18en1e369zyuk45GsErjdwCWBClKQUa0zS6a5nQRlbSlLytNW-okbqRtalFR9vONpw1rKkpX5LLw935q88dxqRGFy0Og57Q76KiklWlYFLCXGWHqg0-xoCd2gY36vCjKKi9ItWrvSK1V6RAqlnRDF0fIJxHfDkMKlqHk8XWBbRJtd79h_8C-eZxlg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yashenkin, A.G.</creator><creator>Utesov, O.I.</creator><creator>Sizanov, A.V.</creator><creator>Syromyatnikov, A.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Self-consistent T-matrix approach to Bose-glass in one dimension</title><author>Yashenkin, A.G. ; Utesov, O.I. ; Sizanov, A.V. ; Syromyatnikov, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-eb635ae3c00c064b46ebb99afd26ab858b43d7a391b8a987b76f1dfc932929713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bose-glass</topic><topic>Bosons</topic><topic>Disorder</topic><topic>Disorders</topic><topic>Fluids</topic><topic>Insulators</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Quantum phase transitions</topic><topic>Self-consistent T-matrix approximation</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yashenkin, A.G.</creatorcontrib><creatorcontrib>Utesov, O.I.</creatorcontrib><creatorcontrib>Sizanov, A.V.</creatorcontrib><creatorcontrib>Syromyatnikov, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yashenkin, A.G.</au><au>Utesov, O.I.</au><au>Sizanov, A.V.</au><au>Syromyatnikov, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent T-matrix approach to Bose-glass in one dimension</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>397</volume><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0304-8853</issn><abstract>Based on the self-consistent T-matrix approximation (SCTMA), the Mott insulator – Bose-glass phase transition of one-dimensional noninteracting bosons subject to binary disorder is considered. The results obtained differ essentially from the conventional case of box distribution of the disorder. The Mott insulator – Bose-glass transition is found to exist at arbitrary strength of the impurities. The single particle density of states is calculated within the frame of SCTMA, numerically, and (for infinite disorder strength) analytically. A good agreement is reported among all three methods. We speculate that certain types of the interaction may lead to the Bose-glass – superfluid transition absent in our theory.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2015.08.068</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2016-01, Vol.397, p.11-19
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_1825462880
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Bose-glass
Bosons
Disorder
Disorders
Fluids
Insulators
Magnetism
Mathematical analysis
Quantum phase transitions
Self-consistent T-matrix approximation
Strength
title Self-consistent T-matrix approach to Bose-glass in one dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20T-matrix%20approach%20to%20Bose-glass%20in%20one%20dimension&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Yashenkin,%20A.G.&rft.date=2016-01-01&rft.volume=397&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2015.08.068&rft_dat=%3Cproquest_cross%3E1825462880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825462880&rft_id=info:pmid/&rft_els_id=S0304885315304923&rfr_iscdi=true