Graph easy sets of mute lambda terms

Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2016-05, Vol.629, p.51-63
Hauptverfasser: Bucciarelli, A., Carraro, A., Favro, G., Salibra, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 51
container_title Theoretical computer science
container_volume 629
creator Bucciarelli, A.
Carraro, A.
Favro, G.
Salibra, A.
description Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.
doi_str_mv 10.1016/j.tcs.2015.12.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825461727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515011858</els_id><sourcerecordid>1825461727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9gyMLAk-Nnxl5hQBQWpEgvMlmO_iERJU2wXqf-eVGXmLm-550n3EHILtAIK8qGvsk8VoyAqYBVl9RlZgFamZMzU52RBOa1LbpS4JFcp9XSOUHJB7tbR7b4KdOlQJMypmNpi3GcsBjc2wRUZ45iuyUXrhoQ3f3dJPl-eP1av5eZ9_bZ62pSeK55LZ7g2DNo6oAjYNJJToFIqbCnWoLXRuvFGBdGAkK2mDnkATjV6zqhvOF-S-9PfXZy-95iyHbvkcRjcFqd9sqCZqCUopuYqnKo-TilFbO0udqOLBwvUHo3Y3s5G7NGIBWZnIzPzeGJw3vDTYbTJd7j1GLqIPtswdf_Qv3-9ZvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825461727</pqid></control><display><type>article</type><title>Graph easy sets of mute lambda terms</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</creator><creatorcontrib>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</creatorcontrib><description>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.12.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calculus ; Computer simulation ; Forcing ; Graph models ; Graphs ; Lambda-calculus ; Mathematical analysis ; Mathematical models ; Mute terms ; Number theory ; Recursive</subject><ispartof>Theoretical computer science, 2016-05, Vol.629, p.51-63</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</citedby><cites>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397515011858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bucciarelli, A.</creatorcontrib><creatorcontrib>Carraro, A.</creatorcontrib><creatorcontrib>Favro, G.</creatorcontrib><creatorcontrib>Salibra, A.</creatorcontrib><title>Graph easy sets of mute lambda terms</title><title>Theoretical computer science</title><description>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</description><subject>Calculus</subject><subject>Computer simulation</subject><subject>Forcing</subject><subject>Graph models</subject><subject>Graphs</subject><subject>Lambda-calculus</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mute terms</subject><subject>Number theory</subject><subject>Recursive</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9gyMLAk-Nnxl5hQBQWpEgvMlmO_iERJU2wXqf-eVGXmLm-550n3EHILtAIK8qGvsk8VoyAqYBVl9RlZgFamZMzU52RBOa1LbpS4JFcp9XSOUHJB7tbR7b4KdOlQJMypmNpi3GcsBjc2wRUZ45iuyUXrhoQ3f3dJPl-eP1av5eZ9_bZ62pSeK55LZ7g2DNo6oAjYNJJToFIqbCnWoLXRuvFGBdGAkK2mDnkATjV6zqhvOF-S-9PfXZy-95iyHbvkcRjcFqd9sqCZqCUopuYqnKo-TilFbO0udqOLBwvUHo3Y3s5G7NGIBWZnIzPzeGJw3vDTYbTJd7j1GLqIPtswdf_Qv3-9ZvY</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Bucciarelli, A.</creator><creator>Carraro, A.</creator><creator>Favro, G.</creator><creator>Salibra, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160523</creationdate><title>Graph easy sets of mute lambda terms</title><author>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calculus</topic><topic>Computer simulation</topic><topic>Forcing</topic><topic>Graph models</topic><topic>Graphs</topic><topic>Lambda-calculus</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mute terms</topic><topic>Number theory</topic><topic>Recursive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucciarelli, A.</creatorcontrib><creatorcontrib>Carraro, A.</creatorcontrib><creatorcontrib>Favro, G.</creatorcontrib><creatorcontrib>Salibra, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucciarelli, A.</au><au>Carraro, A.</au><au>Favro, G.</au><au>Salibra, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph easy sets of mute lambda terms</atitle><jtitle>Theoretical computer science</jtitle><date>2016-05-23</date><risdate>2016</risdate><volume>629</volume><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.12.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2016-05, Vol.629, p.51-63
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_1825461727
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Calculus
Computer simulation
Forcing
Graph models
Graphs
Lambda-calculus
Mathematical analysis
Mathematical models
Mute terms
Number theory
Recursive
title Graph easy sets of mute lambda terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20easy%20sets%20of%20mute%20lambda%20terms&rft.jtitle=Theoretical%20computer%20science&rft.au=Bucciarelli,%20A.&rft.date=2016-05-23&rft.volume=629&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.12.024&rft_dat=%3Cproquest_cross%3E1825461727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825461727&rft_id=info:pmid/&rft_els_id=S0304397515011858&rfr_iscdi=true