Graph easy sets of mute lambda terms
Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus ther...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2016-05, Vol.629, p.51-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | Theoretical computer science |
container_volume | 629 |
creator | Bucciarelli, A. Carraro, A. Favro, G. Salibra, A. |
description | Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus. |
doi_str_mv | 10.1016/j.tcs.2015.12.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825461727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515011858</els_id><sourcerecordid>1825461727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9gyMLAk-Nnxl5hQBQWpEgvMlmO_iERJU2wXqf-eVGXmLm-550n3EHILtAIK8qGvsk8VoyAqYBVl9RlZgFamZMzU52RBOa1LbpS4JFcp9XSOUHJB7tbR7b4KdOlQJMypmNpi3GcsBjc2wRUZ45iuyUXrhoQ3f3dJPl-eP1av5eZ9_bZ62pSeK55LZ7g2DNo6oAjYNJJToFIqbCnWoLXRuvFGBdGAkK2mDnkATjV6zqhvOF-S-9PfXZy-95iyHbvkcRjcFqd9sqCZqCUopuYqnKo-TilFbO0udqOLBwvUHo3Y3s5G7NGIBWZnIzPzeGJw3vDTYbTJd7j1GLqIPtswdf_Qv3-9ZvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825461727</pqid></control><display><type>article</type><title>Graph easy sets of mute lambda terms</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</creator><creatorcontrib>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</creatorcontrib><description>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.12.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calculus ; Computer simulation ; Forcing ; Graph models ; Graphs ; Lambda-calculus ; Mathematical analysis ; Mathematical models ; Mute terms ; Number theory ; Recursive</subject><ispartof>Theoretical computer science, 2016-05, Vol.629, p.51-63</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</citedby><cites>FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397515011858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bucciarelli, A.</creatorcontrib><creatorcontrib>Carraro, A.</creatorcontrib><creatorcontrib>Favro, G.</creatorcontrib><creatorcontrib>Salibra, A.</creatorcontrib><title>Graph easy sets of mute lambda terms</title><title>Theoretical computer science</title><description>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</description><subject>Calculus</subject><subject>Computer simulation</subject><subject>Forcing</subject><subject>Graph models</subject><subject>Graphs</subject><subject>Lambda-calculus</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mute terms</subject><subject>Number theory</subject><subject>Recursive</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9gyMLAk-Nnxl5hQBQWpEgvMlmO_iERJU2wXqf-eVGXmLm-550n3EHILtAIK8qGvsk8VoyAqYBVl9RlZgFamZMzU52RBOa1LbpS4JFcp9XSOUHJB7tbR7b4KdOlQJMypmNpi3GcsBjc2wRUZ45iuyUXrhoQ3f3dJPl-eP1av5eZ9_bZ62pSeK55LZ7g2DNo6oAjYNJJToFIqbCnWoLXRuvFGBdGAkK2mDnkATjV6zqhvOF-S-9PfXZy-95iyHbvkcRjcFqd9sqCZqCUopuYqnKo-TilFbO0udqOLBwvUHo3Y3s5G7NGIBWZnIzPzeGJw3vDTYbTJd7j1GLqIPtswdf_Qv3-9ZvY</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Bucciarelli, A.</creator><creator>Carraro, A.</creator><creator>Favro, G.</creator><creator>Salibra, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160523</creationdate><title>Graph easy sets of mute lambda terms</title><author>Bucciarelli, A. ; Carraro, A. ; Favro, G. ; Salibra, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-a938921f4de5debb63010667ef0e4188988bc97d5b156f80ae3d1308ec320cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calculus</topic><topic>Computer simulation</topic><topic>Forcing</topic><topic>Graph models</topic><topic>Graphs</topic><topic>Lambda-calculus</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mute terms</topic><topic>Number theory</topic><topic>Recursive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucciarelli, A.</creatorcontrib><creatorcontrib>Carraro, A.</creatorcontrib><creatorcontrib>Favro, G.</creatorcontrib><creatorcontrib>Salibra, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucciarelli, A.</au><au>Carraro, A.</au><au>Favro, G.</au><au>Salibra, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph easy sets of mute lambda terms</atitle><jtitle>Theoretical computer science</jtitle><date>2016-05-23</date><risdate>2016</risdate><volume>629</volume><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we provide a brief survey of the notion of undefinedness in the lambda calculus.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.12.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2016-05, Vol.629, p.51-63 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825461727 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Calculus Computer simulation Forcing Graph models Graphs Lambda-calculus Mathematical analysis Mathematical models Mute terms Number theory Recursive |
title | Graph easy sets of mute lambda terms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20easy%20sets%20of%20mute%20lambda%20terms&rft.jtitle=Theoretical%20computer%20science&rft.au=Bucciarelli,%20A.&rft.date=2016-05-23&rft.volume=629&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.12.024&rft_dat=%3Cproquest_cross%3E1825461727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825461727&rft_id=info:pmid/&rft_els_id=S0304397515011858&rfr_iscdi=true |