Hybrid Integration of Visual Attention Model into Image Quality Metric

Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE transactions on information and systems 2015-01, Vol.97 (11), p.2971-2973
1. Verfasser: Jung, Chanho
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2973
container_issue 11
container_start_page 2971
container_title IEICE transactions on information and systems
container_volume 97
creator Jung, Chanho
description Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free saliency map or a quality-task one for the integration into quality metric. A hybrid integration approach which takes the advantages of both saliency maps is presented in this paper. We compare our hybrid integration scheme with existing integration schemes using simple quality metrics. Results show that the proposed method performs better than the previous techniques in terms of prediction accuracy.
doi_str_mv 10.1587/transinf.2014EDL8141
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825461173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825461173</sourcerecordid><originalsourceid>FETCH-LOGICAL-j903-4f017c5bf335120f624ee1f3884cc79daa77aef2220949645a65559a3012c8203</originalsourceid><addsrcrecordid>eNotjE9LwzAcQIMoOOa-gYccvXTml_85jrm5QocIw-tI02REulSb9LBvrzhPD96Dh9AjkCUIrZ7LaFOOKSwpAb55aTRwuEEzUFxUwCTcohkxICstGL1Hi5xjSwTTjCpuZmi7u7Rj7HCdij-NtsQh4SHgj5gn2-NVKT79uf3Q-R7HVAZcn-3J4_ffHssF730Zo3tAd8H22S_-OUeH7eaw3lXN22u9XjXVpyGs4oGAcqINjAmgJEjKvYfAtObOKdNZq5T1gVJKDDeSCyuFEMYyAtRpStgcPV23X-PwPflcjueYne97m_ww5SNoKrgEUIz9AJBpUS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825461173</pqid></control><display><type>article</type><title>Hybrid Integration of Visual Attention Model into Image Quality Metric</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Jung, Chanho</creator><creatorcontrib>Jung, Chanho</creatorcontrib><description>Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free saliency map or a quality-task one for the integration into quality metric. A hybrid integration approach which takes the advantages of both saliency maps is presented in this paper. We compare our hybrid integration scheme with existing integration schemes using simple quality metrics. Results show that the proposed method performs better than the previous techniques in terms of prediction accuracy.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2014EDL8141</identifier><language>jpn</language><subject>Accuracy ; Assessments ; Evolution ; Image quality ; Visual</subject><ispartof>IEICE transactions on information and systems, 2015-01, Vol.97 (11), p.2971-2973</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Chanho</creatorcontrib><title>Hybrid Integration of Visual Attention Model into Image Quality Metric</title><title>IEICE transactions on information and systems</title><description>Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free saliency map or a quality-task one for the integration into quality metric. A hybrid integration approach which takes the advantages of both saliency maps is presented in this paper. We compare our hybrid integration scheme with existing integration schemes using simple quality metrics. Results show that the proposed method performs better than the previous techniques in terms of prediction accuracy.</description><subject>Accuracy</subject><subject>Assessments</subject><subject>Evolution</subject><subject>Image quality</subject><subject>Visual</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotjE9LwzAcQIMoOOa-gYccvXTml_85jrm5QocIw-tI02REulSb9LBvrzhPD96Dh9AjkCUIrZ7LaFOOKSwpAb55aTRwuEEzUFxUwCTcohkxICstGL1Hi5xjSwTTjCpuZmi7u7Rj7HCdij-NtsQh4SHgj5gn2-NVKT79uf3Q-R7HVAZcn-3J4_ffHssF730Zo3tAd8H22S_-OUeH7eaw3lXN22u9XjXVpyGs4oGAcqINjAmgJEjKvYfAtObOKdNZq5T1gVJKDDeSCyuFEMYyAtRpStgcPV23X-PwPflcjueYne97m_ww5SNoKrgEUIz9AJBpUS4</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Jung, Chanho</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Hybrid Integration of Visual Attention Model into Image Quality Metric</title><author>Jung, Chanho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j903-4f017c5bf335120f624ee1f3884cc79daa77aef2220949645a65559a3012c8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Assessments</topic><topic>Evolution</topic><topic>Image quality</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Chanho</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE transactions on information and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Chanho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Integration of Visual Attention Model into Image Quality Metric</atitle><jtitle>IEICE transactions on information and systems</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>97</volume><issue>11</issue><spage>2971</spage><epage>2973</epage><pages>2971-2973</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free saliency map or a quality-task one for the integration into quality metric. A hybrid integration approach which takes the advantages of both saliency maps is presented in this paper. We compare our hybrid integration scheme with existing integration schemes using simple quality metrics. Results show that the proposed method performs better than the previous techniques in terms of prediction accuracy.</abstract><doi>10.1587/transinf.2014EDL8141</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE transactions on information and systems, 2015-01, Vol.97 (11), p.2971-2973
issn 0916-8532
1745-1361
language jpn
recordid cdi_proquest_miscellaneous_1825461173
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Accuracy
Assessments
Evolution
Image quality
Visual
title Hybrid Integration of Visual Attention Model into Image Quality Metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Integration%20of%20Visual%20Attention%20Model%20into%20Image%20Quality%20Metric&rft.jtitle=IEICE%20transactions%20on%20information%20and%20systems&rft.au=Jung,%20Chanho&rft.date=2015-01-01&rft.volume=97&rft.issue=11&rft.spage=2971&rft.epage=2973&rft.pages=2971-2973&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2014EDL8141&rft_dat=%3Cproquest%3E1825461173%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825461173&rft_id=info:pmid/&rfr_iscdi=true