A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis

Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2016-05, Vol.69, p.1-11
Hauptverfasser: Wang, Jianwei, Hu, Yong, Xiao, Fuyuan, Deng, Xinyang, Deng, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Artificial intelligence in medicine
container_volume 69
creator Wang, Jianwei
Hu, Yong
Xiao, Fuyuan
Deng, Xinyang
Deng, Yong
description Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.
doi_str_mv 10.1016/j.artmed.2016.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825458624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S093336571530097X</els_id><sourcerecordid>1808696205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhDRDykUuWsR07DgekVfkrVeJQkLhZXmey620SL7azUvoyvCqOtr1wKSdr7O_7Rp7fFMVrCmsKVL47rE1IA7Zrlqs1VGuA6kmxoqrmJVMSnhYraDgvuRT1RfEixgMA1BWVz4sLVjMuFMCq-LMhoz9hTwZMe9-S5MkUkXTT3d1Mou8SiZgicSNp0bro_EgGc-vGHdmaiC3JtRm2bje5NOcME6eAxIwt-YjDMSYM5c3edBhI2qMPM_EdwZNrcbT4nmyy-XjsnTVpCc5N8n9y1ZPWmd3oo4svi2ed6SO-uj8vi5-fP_24-lpef__y7WpzXdpK8VQKzmRTb7tacMUoNAxYZ2ktGoX5Fi1ueWeQdlCDlFJIpQRmTyMtVqyVkl8Wb8-5x-B_TxiTHly02PdmRD9FTRUTlVCSVf8hBSUbyUA8Lq0bJnjdUJal1Vlqg48xYKePwQ0mzJqCXoDrgz4D1wtwDZXOwLPtzX2Habu8PZgeCGfBh7MA8_RODoOO1i3jb11Am3Tr3WMd_g2wvRsXSrc4Yzz4KYyZjKY6Mg36Zlm6Zeeo4ABN_Yv_Bfgr06I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792537912</pqid></control><display><type>article</type><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</creator><creatorcontrib>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</creatorcontrib><description>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2016.04.004</identifier><identifier>PMID: 27235800</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ambiguity ; Ambiguity measure ; Belief function ; Decision Making ; Decision Support Techniques ; Dempster–Shafer evidence theory ; Diagnosis ; Fuzzy ; Fuzzy Logic ; Fuzzy soft set ; Humans ; Impact tests ; Information fusion ; Internal Medicine ; Mathematical models ; Medical ; Medical diagnosis ; Other ; Probability ; Target recognition ; Uncertainty</subject><ispartof>Artificial intelligence in medicine, 2016-05, Vol.69, p.1-11</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</citedby><cites>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S093336571530097X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27235800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><creatorcontrib>Deng, Xinyang</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</description><subject>Ambiguity</subject><subject>Ambiguity measure</subject><subject>Belief function</subject><subject>Decision Making</subject><subject>Decision Support Techniques</subject><subject>Dempster–Shafer evidence theory</subject><subject>Diagnosis</subject><subject>Fuzzy</subject><subject>Fuzzy Logic</subject><subject>Fuzzy soft set</subject><subject>Humans</subject><subject>Impact tests</subject><subject>Information fusion</subject><subject>Internal Medicine</subject><subject>Mathematical models</subject><subject>Medical</subject><subject>Medical diagnosis</subject><subject>Other</subject><subject>Probability</subject><subject>Target recognition</subject><subject>Uncertainty</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhDRDykUuWsR07DgekVfkrVeJQkLhZXmey620SL7azUvoyvCqOtr1wKSdr7O_7Rp7fFMVrCmsKVL47rE1IA7Zrlqs1VGuA6kmxoqrmJVMSnhYraDgvuRT1RfEixgMA1BWVz4sLVjMuFMCq-LMhoz9hTwZMe9-S5MkUkXTT3d1Mou8SiZgicSNp0bro_EgGc-vGHdmaiC3JtRm2bje5NOcME6eAxIwt-YjDMSYM5c3edBhI2qMPM_EdwZNrcbT4nmyy-XjsnTVpCc5N8n9y1ZPWmd3oo4svi2ed6SO-uj8vi5-fP_24-lpef__y7WpzXdpK8VQKzmRTb7tacMUoNAxYZ2ktGoX5Fi1ueWeQdlCDlFJIpQRmTyMtVqyVkl8Wb8-5x-B_TxiTHly02PdmRD9FTRUTlVCSVf8hBSUbyUA8Lq0bJnjdUJal1Vlqg48xYKePwQ0mzJqCXoDrgz4D1wtwDZXOwLPtzX2Habu8PZgeCGfBh7MA8_RODoOO1i3jb11Am3Tr3WMd_g2wvRsXSrc4Yzz4KYyZjKY6Mg36Zlm6Zeeo4ABN_Yv_Bfgr06I</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Wang, Jianwei</creator><creator>Hu, Yong</creator><creator>Xiao, Fuyuan</creator><creator>Deng, Xinyang</creator><creator>Deng, Yong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><author>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ambiguity</topic><topic>Ambiguity measure</topic><topic>Belief function</topic><topic>Decision Making</topic><topic>Decision Support Techniques</topic><topic>Dempster–Shafer evidence theory</topic><topic>Diagnosis</topic><topic>Fuzzy</topic><topic>Fuzzy Logic</topic><topic>Fuzzy soft set</topic><topic>Humans</topic><topic>Impact tests</topic><topic>Information fusion</topic><topic>Internal Medicine</topic><topic>Mathematical models</topic><topic>Medical</topic><topic>Medical diagnosis</topic><topic>Other</topic><topic>Probability</topic><topic>Target recognition</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><creatorcontrib>Deng, Xinyang</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianwei</au><au>Hu, Yong</au><au>Xiao, Fuyuan</au><au>Deng, Xinyang</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>69</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27235800</pmid><doi>10.1016/j.artmed.2016.04.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2016-05, Vol.69, p.1-11
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_1825458624
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Ambiguity
Ambiguity measure
Belief function
Decision Making
Decision Support Techniques
Dempster–Shafer evidence theory
Diagnosis
Fuzzy
Fuzzy Logic
Fuzzy soft set
Humans
Impact tests
Information fusion
Internal Medicine
Mathematical models
Medical
Medical diagnosis
Other
Probability
Target recognition
Uncertainty
title A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20use%20fuzzy%20soft%20sets%20in%20decision%20making%20based%20on%20ambiguity%20measure%20and%20Dempster-Shafer%20theory%20of%20evidence:%20An%20application%20in%20medical%20diagnosis&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Wang,%20Jianwei&rft.date=2016-05-01&rft.volume=69&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2016.04.004&rft_dat=%3Cproquest_cross%3E1808696205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792537912&rft_id=info:pmid/27235800&rft_els_id=1_s2_0_S093336571530097X&rfr_iscdi=true