A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis
Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making proces...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2016-05, Vol.69, p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Artificial intelligence in medicine |
container_volume | 69 |
creator | Wang, Jianwei Hu, Yong Xiao, Fuyuan Deng, Xinyang Deng, Yong |
description | Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision. |
doi_str_mv | 10.1016/j.artmed.2016.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825458624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S093336571530097X</els_id><sourcerecordid>1808696205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhDRDykUuWsR07DgekVfkrVeJQkLhZXmey620SL7azUvoyvCqOtr1wKSdr7O_7Rp7fFMVrCmsKVL47rE1IA7Zrlqs1VGuA6kmxoqrmJVMSnhYraDgvuRT1RfEixgMA1BWVz4sLVjMuFMCq-LMhoz9hTwZMe9-S5MkUkXTT3d1Mou8SiZgicSNp0bro_EgGc-vGHdmaiC3JtRm2bje5NOcME6eAxIwt-YjDMSYM5c3edBhI2qMPM_EdwZNrcbT4nmyy-XjsnTVpCc5N8n9y1ZPWmd3oo4svi2ed6SO-uj8vi5-fP_24-lpef__y7WpzXdpK8VQKzmRTb7tacMUoNAxYZ2ktGoX5Fi1ueWeQdlCDlFJIpQRmTyMtVqyVkl8Wb8-5x-B_TxiTHly02PdmRD9FTRUTlVCSVf8hBSUbyUA8Lq0bJnjdUJal1Vlqg48xYKePwQ0mzJqCXoDrgz4D1wtwDZXOwLPtzX2Habu8PZgeCGfBh7MA8_RODoOO1i3jb11Am3Tr3WMd_g2wvRsXSrc4Yzz4KYyZjKY6Mg36Zlm6Zeeo4ABN_Yv_Bfgr06I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792537912</pqid></control><display><type>article</type><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</creator><creatorcontrib>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</creatorcontrib><description>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2016.04.004</identifier><identifier>PMID: 27235800</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ambiguity ; Ambiguity measure ; Belief function ; Decision Making ; Decision Support Techniques ; Dempster–Shafer evidence theory ; Diagnosis ; Fuzzy ; Fuzzy Logic ; Fuzzy soft set ; Humans ; Impact tests ; Information fusion ; Internal Medicine ; Mathematical models ; Medical ; Medical diagnosis ; Other ; Probability ; Target recognition ; Uncertainty</subject><ispartof>Artificial intelligence in medicine, 2016-05, Vol.69, p.1-11</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</citedby><cites>FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S093336571530097X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27235800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><creatorcontrib>Deng, Xinyang</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</description><subject>Ambiguity</subject><subject>Ambiguity measure</subject><subject>Belief function</subject><subject>Decision Making</subject><subject>Decision Support Techniques</subject><subject>Dempster–Shafer evidence theory</subject><subject>Diagnosis</subject><subject>Fuzzy</subject><subject>Fuzzy Logic</subject><subject>Fuzzy soft set</subject><subject>Humans</subject><subject>Impact tests</subject><subject>Information fusion</subject><subject>Internal Medicine</subject><subject>Mathematical models</subject><subject>Medical</subject><subject>Medical diagnosis</subject><subject>Other</subject><subject>Probability</subject><subject>Target recognition</subject><subject>Uncertainty</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhDRDykUuWsR07DgekVfkrVeJQkLhZXmey620SL7azUvoyvCqOtr1wKSdr7O_7Rp7fFMVrCmsKVL47rE1IA7Zrlqs1VGuA6kmxoqrmJVMSnhYraDgvuRT1RfEixgMA1BWVz4sLVjMuFMCq-LMhoz9hTwZMe9-S5MkUkXTT3d1Mou8SiZgicSNp0bro_EgGc-vGHdmaiC3JtRm2bje5NOcME6eAxIwt-YjDMSYM5c3edBhI2qMPM_EdwZNrcbT4nmyy-XjsnTVpCc5N8n9y1ZPWmd3oo4svi2ed6SO-uj8vi5-fP_24-lpef__y7WpzXdpK8VQKzmRTb7tacMUoNAxYZ2ktGoX5Fi1ueWeQdlCDlFJIpQRmTyMtVqyVkl8Wb8-5x-B_TxiTHly02PdmRD9FTRUTlVCSVf8hBSUbyUA8Lq0bJnjdUJal1Vlqg48xYKePwQ0mzJqCXoDrgz4D1wtwDZXOwLPtzX2Habu8PZgeCGfBh7MA8_RODoOO1i3jb11Am3Tr3WMd_g2wvRsXSrc4Yzz4KYyZjKY6Mg36Zlm6Zeeo4ABN_Yv_Bfgr06I</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Wang, Jianwei</creator><creator>Hu, Yong</creator><creator>Xiao, Fuyuan</creator><creator>Deng, Xinyang</creator><creator>Deng, Yong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</title><author>Wang, Jianwei ; Hu, Yong ; Xiao, Fuyuan ; Deng, Xinyang ; Deng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-532697bf75382109202fc17598e7bfeceb3fae1f07066656885e53296ce42d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ambiguity</topic><topic>Ambiguity measure</topic><topic>Belief function</topic><topic>Decision Making</topic><topic>Decision Support Techniques</topic><topic>Dempster–Shafer evidence theory</topic><topic>Diagnosis</topic><topic>Fuzzy</topic><topic>Fuzzy Logic</topic><topic>Fuzzy soft set</topic><topic>Humans</topic><topic>Impact tests</topic><topic>Information fusion</topic><topic>Internal Medicine</topic><topic>Mathematical models</topic><topic>Medical</topic><topic>Medical diagnosis</topic><topic>Other</topic><topic>Probability</topic><topic>Target recognition</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><creatorcontrib>Deng, Xinyang</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianwei</au><au>Hu, Yong</au><au>Xiao, Fuyuan</au><au>Deng, Xinyang</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>69</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Highlights • An improved fuzzy soft set-based decision making approach based on the ambiguity measure is proposed. • Uncertain information in medical diagnosis can be modeled and fused by evidence theory. • The reasonable ambiguity measure reduces the uncertainty degree in the decision making process • The effectiveness of the model is demonstrated in medical decision.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27235800</pmid><doi>10.1016/j.artmed.2016.04.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2016-05, Vol.69, p.1-11 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825458624 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Ambiguity Ambiguity measure Belief function Decision Making Decision Support Techniques Dempster–Shafer evidence theory Diagnosis Fuzzy Fuzzy Logic Fuzzy soft set Humans Impact tests Information fusion Internal Medicine Mathematical models Medical Medical diagnosis Other Probability Target recognition Uncertainty |
title | A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20use%20fuzzy%20soft%20sets%20in%20decision%20making%20based%20on%20ambiguity%20measure%20and%20Dempster-Shafer%20theory%20of%20evidence:%20An%20application%20in%20medical%20diagnosis&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Wang,%20Jianwei&rft.date=2016-05-01&rft.volume=69&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2016.04.004&rft_dat=%3Cproquest_cross%3E1808696205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792537912&rft_id=info:pmid/27235800&rft_els_id=1_s2_0_S093336571530097X&rfr_iscdi=true |